論文の概要: Beam Prediction based on Large Language Models
- arxiv url: http://arxiv.org/abs/2408.08707v2
- Date: Wed, 12 Feb 2025 13:29:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 18:10:00.618816
- Title: Beam Prediction based on Large Language Models
- Title(参考訳): 大規模言語モデルに基づくビーム予測
- Authors: Yucheng Sheng, Kai Huang, Le Liang, Peng Liu, Shi Jin, Geoffrey Ye Li,
- Abstract要約: 時系列予測タスクとしてミリ波(mmWave)ビーム予測問題を定式化する。
我々は、歴史的観測をトレーニング可能なトークン化器を用いてテキストベースの表現に変換する。
提案手法はLLMのパワーを利用して将来の最適ビームを予測する。
- 参考スコア(独自算出の注目度): 51.45077318268427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this letter, we use large language models (LLMs) to develop a high-performing and robust beam prediction method. We formulate the millimeter wave (mmWave) beam prediction problem as a time series forecasting task, where the historical observations are aggregated through cross-variable attention and then transformed into text-based representations using a trainable tokenizer. By leveraging the prompt-as-prefix (PaP) technique for contextual enrichment, our method harnesses the power of LLMs to predict future optimal beams. Simulation results demonstrate that our LLM-based approach outperforms traditional learning-based models in prediction accuracy as well as robustness, highlighting the significant potential of LLMs in enhancing wireless communication systems.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を用いて,高性能でロバストなビーム予測手法を提案する。
時系列予測タスクとしてミリ波(mmWave)ビーム予測問題を定式化し、歴史的観測を多変数の注意を通して集約し、訓練可能なトークン化器を用いてテキストベースの表現に変換する。
コンテクストエンリッチメントのためのプロンプト・アズ・プレフィックス(PaP)技術を活用することで,LLMのパワーを利用して将来の最適ビームを予測する。
シミュレーションの結果,LLMに基づくアプローチは,従来の学習モデルよりも予測精度やロバスト性に優れており,無線通信システムの強化においてLLMが持つ有意義な可能性を浮き彫りにしている。
関連論文リスト
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
本稿では,Large Language Models (LLM) をモデル選択の軽量な代替手段として活用することを提案する。
提案手法は, LLMの固有知識と推論能力を活用することで, 明示的な性能行列の必要性を解消する。
論文 参考訳(メタデータ) (2025-04-02T20:33:27Z) - BeamLLM: Vision-Empowered mmWave Beam Prediction with Large Language Models [22.11810939970069]
BeamLLMは、大規模言語モデル(LLM)を利用した視覚支援ミリ波(mmWave)ビーム予測フレームワークである
現実的な車内構造(V2I)のシナリオに基づいて,提案手法は61.01%のTop-1精度と97.39%のTop-3精度を標準予測タスクで達成する。
数ショットの予測シナリオでは、パフォーマンス劣化はタイムサンプル1から10までの12.56%(トップ-1)と5.55%(トップ-3)に制限され、優れた予測能力を示す。
論文 参考訳(メタデータ) (2025-03-13T14:55:59Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXLはプロトタイプベースの時系列エンコーダを統合するマルチモーダル予測フレームワークである。
より正確な予測と解釈可能な説明を生成する。
4つの実世界のデータセットに対する実証的な評価は、TimeXLがAUCで最大8.9%の改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-03-02T20:40:53Z) - LLM Post-Training: A Deep Dive into Reasoning Large Language Models [131.10969986056]
大規模言語モデル (LLMs) は自然言語処理の状況を変え、多様な応用をもたらした。
ポストトレーニング手法により、LLMは知識を洗練させ、推論を改善し、事実の正確性を高め、ユーザの意図や倫理的配慮をより効果的に整合させることができる。
論文 参考訳(メタデータ) (2025-02-28T18:59:54Z) - LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
第6世代(6G)モバイルネットワークは、ハイモビリティ通信をサポートする上で、新たな課題をもたらす。
本稿では,スケーラブルで全線形なエンコーダのみのトランスフォーマーモデルに基づく,革新的なチャネル予測フレームワークLinFormerを提案する。
提案手法は,高い予測精度を維持しつつ,計算複雑性を大幅に低減し,コスト効率のよい基地局(BS)の展開に適している。
論文 参考訳(メタデータ) (2024-10-28T13:04:23Z) - LLM-TS Integrator: Integrating LLM for Enhanced Time Series Modeling [5.853711797849859]
天気予報や異常検出などの動的システムでは時系列モデリングが不可欠である。
近年,大規模言語モデル(LLM)をTSモデリングに利用し,その強力なパターン認識機能を活用している。
論文 参考訳(メタデータ) (2024-10-21T20:29:46Z) - Csi-LLM: A Novel Downlink Channel Prediction Method Aligned with LLM Pre-Training [3.2721332912474668]
大規模言語モデル(LLM)は、複雑な配列に対して強力なパターン認識と推論能力を示す。
可変ステップ履歴列をモデル化するLLMを用いたダウンリンクチャネル予測技術であるCsi-LLMを紹介する。
そこで我々は,Csi-LLMの設計と訓練を自然言語タスクの処理と整合させる。
論文 参考訳(メタデータ) (2024-08-15T11:39:23Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
我々のゴールは、数値データを処理し、任意の場所で確率的予測を行うレグレッションモデルを構築することである。
まず、大規模言語モデルから明示的で一貫性のある数値予測分布を抽出する戦略を探求する。
本研究では,テキストを数値予測に組み込む能力を示し,予測性能を改善し,定性的な記述を反映した定量的な構造を与える。
論文 参考訳(メタデータ) (2024-05-21T15:13:12Z) - WDMoE: Wireless Distributed Large Language Models with Mixture of Experts [65.57581050707738]
我々は,Mixture of Experts (MoE)に基づく無線分散大言語モデル(LLM)パラダイムを提案する。
我々は,基地局(BS)とモバイルデバイスにゲーティングネットワークと先行するニューラルネットワーク層を配置することにより,LLM内のMoE層を分解する。
我々は、モデルの性能とエンドツーエンドのレイテンシの両方を考慮して、専門家の選択ポリシーを設計する。
論文 参考訳(メタデータ) (2024-05-06T02:55:50Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。