MicroSSIM: Improved Structural Similarity for Comparing Microscopy Data
- URL: http://arxiv.org/abs/2408.08747v3
- Date: Tue, 15 Oct 2024 12:55:21 GMT
- Title: MicroSSIM: Improved Structural Similarity for Comparing Microscopy Data
- Authors: Ashesh Ashesh, Joran Deschamps, Florian Jug,
- Abstract summary: Structural Similarity (SSIM) is one of the most popular measures used in the field.
We show that SSIM components behave unexpectedly when the prediction generated from low-SNR input is compared with the corresponding high-SNR data.
We introduce MicroSSIM, a variant of SSIM, which overcomes the above-discussed issues.
- Score: 6.550912532749276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Microscopy is routinely used to image biological structures of interest. Due to imaging constraints, acquired images, also called as micrographs, are typically low-SNR and contain noise. Over the last few years, regression-based tasks like unsupervised denoising and splitting have found utility in working with such noisy micrographs. For evaluation, Structural Similarity (SSIM) is one of the most popular measures used in the field. For such tasks, the best evaluation would be when both low-SNR noisy images and corresponding high-SNR clean images are obtained directly from a microscope. However, due to the following three peculiar properties of the microscopy data, we observe that SSIM is not well suited to this data regime: (a) high-SNR micrographs have higher intensity pixels as compared to low-SNR micrographs, (b) high-SNR micrographs have higher intensity pixels than found in natural images, images for which SSIM was developed, and (c) a digitally configurable offset is added by the detector present inside the microscope which affects the SSIM value. We show that SSIM components behave unexpectedly when the prediction generated from low-SNR input is compared with the corresponding high-SNR data. We explain this by introducing the phenomenon of saturation, where SSIM components become less sensitive to (dis)similarity between the images. We propose an intuitive way to quantify this, which explains the observed SSIM behavior. We introduce MicroSSIM, a variant of SSIM, which overcomes the above-discussed issues. We justify the soundness and utility of MicroSSIM using theoretical and empirical arguments and show the utility of MicroSSIM on two tasks: unsupervised denoising and joint image splitting with unsupervised denoising. Since our formulation can be applied to a broad family of SSIM-based measures, we also introduce MicroMS3IM, a microscopy-specific variation of MS-SSIM.
Related papers
- CSIM: A Copula-based similarity index sensitive to local changes for Image quality assessment [2.3874115898130865]
Image similarity metrics play an important role in computer vision applications, as they are used in image processing, computer vision and machine learning.
Existing metrics, such as PSNR, MSE, SSIM, ISSM and FSIM, often face limitations in terms of either speed, complexity or sensitivity to small changes in images.
A novel image similarity metric, namely CSIM, that combines real-time while being sensitive to subtle image variations is investigated in this paper.
arXiv Detail & Related papers (2024-10-02T10:46:05Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - Task-Based Assessment for Neural Networks: Evaluating Undersampled MRI
Reconstructions based on Human Observer Signal Detection [45.82374977939355]
Common metrics for evaluating image quality like the normalized root mean squared error (NRMSE) and structural similarity (SSIM) are global metrics which average out impact of subtle features in the images.
We used measures of image quality which incorporate a subtle signal for a specific task allow for image quality assessment which locally evaluates the effect of undersampling on a signal.
arXiv Detail & Related papers (2022-10-21T16:39:04Z) - Differentiable Electron Microscopy Simulation: Methods and Applications
for Visualization [40.8023670606058]
We propose a new microscopy simulation system that can depict atomistic models in a micrograph visual style.
The system is scalable, able to represent simulation of electron microscopy of tens of viral particles and synthesizes the image faster than previous methods.
arXiv Detail & Related papers (2022-05-08T12:39:04Z) - Spatio-temporal Vision Transformer for Super-resolution Microscopy [2.8348950186890467]
Structured illumination microscopy (SIM) is an optical super-resolution technique that enables live-cell imaging beyond the diffraction limit.
We propose a new transformer-based reconstruction method, VSR-SIM, that uses shifted 3-dimensional window multi-head attention.
We demonstrate a use case enabled by VSR-SIM referred to as rolling SIM imaging, which increases temporal resolution in SIM by a factor of 9.
arXiv Detail & Related papers (2022-02-28T19:01:10Z) - DSSIM: a structural similarity index for floating-point data [68.8204255655161]
We propose an alternative to the popular SSIM that can be applied directly to the floating point data, which we refer to as the Data SSIM (DSSIM)
While we demonstrate the usefulness of the DSSIM in the context of evaluating differences due to lossy compression on large volumes of simulation data, the DSSIM may prove useful for many other applications involving simulation or image data.
arXiv Detail & Related papers (2022-02-05T19:18:33Z) - Video-based Facial Micro-Expression Analysis: A Survey of Datasets,
Features and Algorithms [52.58031087639394]
micro-expressions are involuntary and transient facial expressions.
They can provide important information in a broad range of applications such as lie detection, criminal detection, etc.
Since micro-expressions are transient and of low intensity, their detection and recognition is difficult and relies heavily on expert experiences.
arXiv Detail & Related papers (2022-01-30T05:14:13Z) - Fast and Light-Weight Network for Single Frame Structured Illumination
Microscopy Super-Resolution [22.953512091536663]
We propose a single-frame structured illumination microscopy (SF-SIM) based on deep learning.
Our method is almost 14 times faster than traditional SIM methods when achieving similar results.
arXiv Detail & Related papers (2021-11-17T13:39:41Z) - W2S: Microscopy Data with Joint Denoising and Super-Resolution for
Widefield to SIM Mapping [17.317001872212543]
In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution.
To obtain clean high-resolution (HR) images, one can either use microscopy techniques, such as structured-illumination microscopy (SIM) or apply denoising and super-resolution (SR) algorithms.
We show that state-of-the-art SR networks perform very poorly on noisy inputs.
arXiv Detail & Related papers (2020-03-12T18:15:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.