論文の概要: A Disease-Specific Foundation Model Using Over 100K Fundus Images: Release and Validation for Abnormality and Multi-Disease Classification on Downstream Tasks
- arxiv url: http://arxiv.org/abs/2408.08790v1
- Date: Fri, 16 Aug 2024 15:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:03:59.352901
- Title: A Disease-Specific Foundation Model Using Over 100K Fundus Images: Release and Validation for Abnormality and Multi-Disease Classification on Downstream Tasks
- Title(参考訳): 100万枚以上のファウンダス画像を用いた疾患特異的基礎モデル:下流課題における異常・多変量分類のリリースと検証
- Authors: Boa Jang, Youngbin Ahn, Eun Kyung Choe, Chang Ki Yoon, Hyuk Jin Choi, Young-Gon Kim,
- Abstract要約: 基礎画像の異常を検出するための教師付き人工知能モデルであるFundus-Specific Pretrained Model(Image+Fundus)を開発した。
57,803枚の画像を用いて、この事前訓練されたモデルを開発し、様々な下流タスクにおいて優れた性能を実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence applied to retinal images offers significant potential for recognizing signs and symptoms of retinal conditions and expediting the diagnosis of eye diseases and systemic disorders. However, developing generalized artificial intelligence models for medical data often requires a large number of labeled images representing various disease signs, and most models are typically task-specific, focusing on major retinal diseases. In this study, we developed a Fundus-Specific Pretrained Model (Image+Fundus), a supervised artificial intelligence model trained to detect abnormalities in fundus images. A total of 57,803 images were used to develop this pretrained model, which achieved superior performance across various downstream tasks, indicating that our proposed model outperforms other general methods. Our Image+Fundus model offers a generalized approach to improve model performance while reducing the number of labeled datasets required. Additionally, it provides more disease-specific insights into fundus images, with visualizations generated by our model. These disease-specific foundation models are invaluable in enhancing the performance and efficiency of deep learning models in the field of fundus imaging.
- Abstract(参考訳): 網膜画像に応用された人工知能は、網膜状態の徴候や症状を認識し、眼疾患や全身疾患の診断を迅速化するための重要な可能性を秘めている。
しかし、医学データのための汎用人工知能モデルを開発するには、様々な病気の兆候を表すラベル付き画像が多数必要であり、ほとんどのモデルは、主要な網膜疾患に焦点を当てたタスク固有である。
本研究では,基礎画像の異常を検出するための教師付き人工知能モデルであるFundus-Specific Pretrained Model(Image+Fundus)を開発した。
57,803枚の画像を用いて事前学習モデルを構築し,様々な下流タスクにおいて優れた性能を達成し,提案モデルが他の一般的な手法よりも優れていることを示す。
当社のImage+Fundusモデルは,ラベル付きデータセットの数を削減しつつ,モデル性能を改善するための汎用的なアプローチを提供する。
さらに、私たちのモデルが生成した視覚化により、根底画像に対するより病特異的な洞察を提供する。
これらの疾患特異的基盤モデルは、基礎画像の分野でのディープラーニングモデルの性能と効率を高める上で非常に有用である。
関連論文リスト
- EyeDiff: text-to-image diffusion model improves rare eye disease diagnosis [7.884451100342276]
EyeDiffは、自然言語のプロンプトからマルチモーダル眼科画像を生成するために設計されたテキスト・ツー・イメージモデルである。
EyeDiffは8つの大規模なデータセットでトレーニングされており、10のマルチリージョンの外部データセットに適応している。
論文 参考訳(メタデータ) (2024-11-15T07:30:53Z) - EyeFound: A Multimodal Generalist Foundation Model for Ophthalmic Imaging [13.88319807760491]
眼科画像のマルチモーダル基盤モデルであるEyeFoundを提案する。
ラベルのないマルチモーダル網膜画像から一般化可能な表現を学習する。
11の眼科領域にわたる227の病院の278万枚の画像で訓練されている。
論文 参考訳(メタデータ) (2024-05-18T17:03:39Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures [1.6000489723889526]
糖尿病網膜症や緑内障などの眼疾患は、公衆衛生上の重大な課題となる。
深層学習モデルは、網膜イメージングのような医療画像を分析する強力なツールとして登場した。
課題は、モデル適合性と不確実性の推定であり、これは臨床的な意思決定に不可欠である。
論文 参考訳(メタデータ) (2024-01-21T04:14:54Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
視覚と言語の基礎は、様々な自然画像とテキストデータに基づいて事前訓練されており、有望なアプローチとして現れている。
一般化性能を,同じ分布データセット上で微調整した後,事前学習した各種モデルの未確認領域と比較した。
さらに,凍結モデルに対する新しいベイズ不確実性推定法を開発し,分布外データに基づくモデルの性能評価指標として利用した。
論文 参考訳(メタデータ) (2023-11-18T14:52:10Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
ファンデーションモデルは、多くの場合、大規模なデータで事前訓練されているが、様々なビジョンや言語アプリケーションのジャンプ開始において、最も成功している。
最近の進歩により、下流タスクにおける基礎モデルの適応は、少数のトレーニングサンプルだけで効率的に行えるようになった。
しかし, 医用画像解析におけるそのような学習パラダイムの適用は, 一般に公開されているデータやベンチマークが不足しているため, 依然として少ない。
論文 参考訳(メタデータ) (2023-06-16T01:46:07Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
臨床の文脈を忠実に描写する医療画像の生成モデルを構築することは、医療データセットの不明瞭さを軽減するのに役立つ。
安定拡散パイプラインのサブコンポーネントを探索し、モデルを微調整して医用画像を生成する。
我々の最良の性能モデルは、安定な拡散ベースラインを改善し、合成ラジオグラフィ画像に現実的な異常を挿入するように条件付けすることができる。
論文 参考訳(メタデータ) (2022-10-09T01:43:08Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。