Representation Learning of Geometric Trees
- URL: http://arxiv.org/abs/2408.08799v1
- Date: Fri, 16 Aug 2024 15:16:35 GMT
- Title: Representation Learning of Geometric Trees
- Authors: Zheng Zhang, Allen Zhang, Ruth Nelson, Giorgio Ascoli, Liang Zhao,
- Abstract summary: We introduce a new representation learning framework tailored for geometric trees.
It first features a unique message passing neural network, which is both provably geometrical structure-recoverable and rotation-translation invariant.
We validate our method's effectiveness on eight real-world datasets, demonstrating its capability to represent geometric trees.
- Score: 9.280083998326285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometric trees are characterized by their tree-structured layout and spatially constrained nodes and edges, which significantly impacts their topological attributes. This inherent hierarchical structure plays a crucial role in domains such as neuron morphology and river geomorphology, but traditional graph representation methods often overlook these specific characteristics of tree structures. To address this, we introduce a new representation learning framework tailored for geometric trees. It first features a unique message passing neural network, which is both provably geometrical structure-recoverable and rotation-translation invariant. To address the data label scarcity issue, our approach also includes two innovative training targets that reflect the hierarchical ordering and geometric structure of these geometric trees. This enables fully self-supervised learning without explicit labels. We validate our method's effectiveness on eight real-world datasets, demonstrating its capability to represent geometric trees.
Related papers
- A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - DeepBranchTracer: A Generally-Applicable Approach to Curvilinear
Structure Reconstruction Using Multi-Feature Learning [12.047523258256088]
We introduce DeepBranchTracer, a novel method that learns both external image features and internal geometric characteristics to reconstruct curvilinear structures.
We extensively evaluated our model on both 2D and 3D datasets, demonstrating its superior performance over existing segmentation and reconstruction methods.
arXiv Detail & Related papers (2024-02-02T07:13:07Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Roof-GAN: Learning to Generate Roof Geometry and Relations for
Residential Houses [37.6686237027665]
Roof-GAN is a novel generative adversarial network that generates structured geometry of residential roof structures as a set of roof primitives and their relationships.
The generator produces a structured roof model as a graph, which consists of 1) primitive geometry as images at each node, 2) inter-primitive colinear/coplanar relationships at each edge, and 3) primitive geometry in a vector format at each node.
The discriminator is trained to assess the primitive geometry, the primitive relationships, and the primitive vector geometry in a fully end-to-end architecture.
arXiv Detail & Related papers (2020-12-17T00:47:57Z) - Learning from Protein Structure with Geometric Vector Perceptrons [6.5360079597553025]
We introduce geometric vector perceptrons, which extend standard dense layers to operate on collections of Euclidean vectors.
We demonstrate our approach on two important problems in learning from protein structure: model quality assessment and computational protein design.
arXiv Detail & Related papers (2020-09-03T01:54:25Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z) - PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree
Conditions [66.87405921626004]
This paper investigates the novel problem of generating 3D shape point cloud geometry from a symbolic part tree representation.
We propose a conditional GAN "part tree"-to-"point cloud" model (PT2PC) that disentangles the structural and geometric factors.
arXiv Detail & Related papers (2020-03-19T08:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.