Fabrication of Spin-1/2 Heisenberg Antiferromagnetic Chains via Combined On-surface Synthesis and Reduction for Spinon Detection
- URL: http://arxiv.org/abs/2408.08801v1
- Date: Fri, 16 Aug 2024 15:24:09 GMT
- Title: Fabrication of Spin-1/2 Heisenberg Antiferromagnetic Chains via Combined On-surface Synthesis and Reduction for Spinon Detection
- Authors: Xuelei Su, Zhihao Ding, Ye Hong, Nan Ke, KaKing Yan, Can Li, Yifan Jiang, Ping Yu,
- Abstract summary: We report the fabrication of spin-1/2 Heisenberg chains through on-surface synthesis and in-situ reduction.
A closed-shell nanographene is employed as a precursor for Ullman coupling to avoid radical fusing.
The spin excitation gaps are found to decrease in power-law as the chain lengths, suggesting its gapless feature.
- Score: 11.677646919977835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin-1/2 Heisenberg antiferromagnetic chains are excellent one-dimensional platforms for exploring quantum magnetic states and quasiparticle fractionalization. Understanding its quantum magnetism and quasiparticle excitation at the atomic scale is crucial for manipulating the quantum spin systems. Here, we report the fabrication of spin-1/2 Heisenberg chains through on-surface synthesis and in-situ reduction. A closed-shell nanographene is employed as a precursor for Ullman coupling to avoid radical fusing, thus obtaining oligomer chains. Following exposure to atomic hydrogen and tip manipulation, closed-shell polymers are transformed into spin-1/2 chains with controlled lengths by reducing the ketone groups and subsequent hydrogen desorption. The spin excitation gaps are found to decrease in power-law as the chain lengths, suggesting its gapless feature. More interestingly, the spinon dispersion is extracted from the inelastic spectroscopic spectra, agreeing well with the calculations. Our results demonstrate the great potential of fabricating desired quantum systems through a combined on-surface synthesis and reduction approach.
Related papers
- Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - Gapless spin excitations in nanographene-based antiferromagnetic spin-1/2 Heisenberg chains [8.1791518522452]
Haldane's seminal work established two fundamentally different types of excitation spectra for antiferromagnetic Heisenberg quantum spin chains.
In finite-length half-integer spin chains, quantization induces a gap in the excitation spectrum, with the upper bound given by the Lieb-Schulz-Mattis (LSM) theorem.
Here, we investigate the length-dependent excitations in spin-1/2 Heisenberg chains obtained by covalently linking olympicenes--Olympic rings shaped nanographenes carrying spin-1/2--into one-dimensional chains.
arXiv Detail & Related papers (2024-08-19T14:36:33Z) - Building spin-1/2 antiferromagnetic Heisenberg chains with diaza-nanographenes [12.13904791704878]
Graphene nanostructures with pi-magnetism offer a chemically tunable platform to explore quantum magnetic interactions.
We demonstrate the successful on-surface synthesis of spin-1/2 antiferromagnetic Heisenberg chains with parity-dependent magnetization.
Our findings provide an effective strategy to construct nanographene spin chains and unveil the odd-even effect in their magnetic properties.
arXiv Detail & Related papers (2024-07-30T02:58:33Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [34.95884242542007]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.
We demonstrate its robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.
Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Simulating Meson Scattering on Spin Quantum Simulators [30.432877421232842]
We develop two methods to create entangled spin states corresponding to wave packets of composite particles in analog quantum simulators of Ising spin Hamiltonians.
With a focus on trapped-ion simulators, we numerically benchmark both methods and show that high-fidelity wave packets can be achieved in near-term experiments.
arXiv Detail & Related papers (2024-03-11T18:00:07Z) - Tunable topological phases in nanographene-based spin-1/2
alternating-exchange Heisenberg chains [8.1791518522452]
We present a versatile platform enabling site-selective spin manipulation in many-body spin systems.
Our findings are corroborated by theoretical calculations, opening promising avenues toward the development of spin-based quantum devices.
arXiv Detail & Related papers (2024-02-21T07:45:05Z) - Quantum phase transition in magnetic nanographenes on a lead
superconductor [21.166883497183687]
Quantum spins are proposed to host exotic interactions with superconductivity.
Magnetic nanographenes have been proven to host intrinsic quantum magnetism due to their negligible spin orbital coupling and crystal field splitting.
We fabricate three atomically precise nanographenes with the same magnetic ground state of spin S=1/2 on Pb (111) through engineering sublattice imbalance in graphene honeycomb lattice.
arXiv Detail & Related papers (2022-07-12T04:52:02Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Transverse spin dynamics in the anisotropic Heisenberg model realized
with ultracold atoms [0.0]
We simulate the dynamics of 1D Heisenberg spin chains using ultracold atoms.
We observe fast, local spin decay controlled by the anisotropy.
arXiv Detail & Related papers (2021-03-14T08:22:07Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.