Simulating Meson Scattering on Spin Quantum Simulators
- URL: http://arxiv.org/abs/2403.07061v2
- Date: Wed, 13 Mar 2024 14:46:25 GMT
- Title: Simulating Meson Scattering on Spin Quantum Simulators
- Authors: Elizabeth R. Bennewitz, Brayden Ware, Alexander Schuckert, Alessio
Lerose, Federica M. Surace, Ron Belyansky, William Morong, De Luo, Arinjoy
De, Kate S. Collins, Or Katz, Christopher Monroe, Zohreh Davoudi, Alexey V.
Gorshkov
- Abstract summary: We develop two methods to create entangled spin states corresponding to wave packets of composite particles in analog quantum simulators of Ising spin Hamiltonians.
With a focus on trapped-ion simulators, we numerically benchmark both methods and show that high-fidelity wave packets can be achieved in near-term experiments.
- Score: 30.432877421232842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studying high-energy collisions of composite particles, such as hadrons and
nuclei, is an outstanding goal for quantum simulators. However, preparation of
hadronic wave packets has posed a significant challenge, due to the complexity
of hadrons and the precise structure of wave packets. This has limited
demonstrations of hadron scattering on quantum simulators to date. Observations
of confinement and composite excitations in quantum spin systems have opened up
the possibility to explore scattering dynamics in spin models. In this article,
we develop two methods to create entangled spin states corresponding to wave
packets of composite particles in analog quantum simulators of Ising spin
Hamiltonians. One wave-packet preparation method uses the blockade effect
enabled by beyond-nearest-neighbor Ising spin interactions. The other method
utilizes a quantum-bus-mediated exchange, such as the native spin-phonon
coupling in trapped-ion arrays. With a focus on trapped-ion simulators, we
numerically benchmark both methods and show that high-fidelity wave packets can
be achieved in near-term experiments. We numerically study scattering of wave
packets for experimentally realizable parameters in the Ising model and find
inelastic-scattering regimes, corresponding to particle production in the
scattering event, with prominent and distinct experimental signals. Our
proposal, therefore, demonstrates the potential of observing inelastic
scattering in near-term quantum simulators.
Related papers
- Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Predicting correlations in superradiant emission from a cascaded quantum system [0.0]
A novel type of cascaded quantum system has been realized using nanofiber-coupled cold atomic ensembles.
We develop a new simulation technique based on the truncated Wigner approximation for spins.
Our simulation tool can predict the second-order quantum coherence function, $g(2)$, along with other correlators of the light field emitted by a strongly excited cascaded system of two-level emitters.
arXiv Detail & Related papers (2024-07-02T10:51:40Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Fermionic wave packet scattering: a quantum computing approach [0.0]
We show how to efficiently obtain expectation values of observables throughout the evolution of the wave packets on digital quantum computers.
In addition, we perform a small-scale demonstration on IBM's quantum hardware, showing that our method is suitable for current and near-term quantum devices.
arXiv Detail & Related papers (2023-12-04T19:00:04Z) - High-Energy Collision of Quarks and Mesons in the Schwinger Model: From
Tensor Networks to Circuit QED [0.0]
We study the scattering dynamics of lattice quantum electrodynamics in 1+1 dimensions on quantum simulators.
We construct multi-particle wave-packet states, evolve them in time, and detect outgoing particles post collision.
This study highlights the role of classical and quantum simulation in enhancing our understanding of scattering processes in quantum field theories in real time.
arXiv Detail & Related papers (2023-07-05T18:00:00Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Detecting Confined and Deconfined Spinons in Dynamical Quantum
Simulations [2.526646643978384]
Dynamical spin-structure factor (DSF) contains fingerprint information of collective excitations in quantum spin systems.
It is challenging to compute the spectral properties accurately via many-body simulations.
We establish a link between the many-body dynamics and quantum simulations by studying the non-equilibrium DSF.
arXiv Detail & Related papers (2021-10-05T17:50:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.