論文の概要: FLEXTAF: Enhancing Table Reasoning with Flexible Tabular Formats
- arxiv url: http://arxiv.org/abs/2408.08841v2
- Date: Tue, 27 Aug 2024 06:23:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 18:28:54.309561
- Title: FLEXTAF: Enhancing Table Reasoning with Flexible Tabular Formats
- Title(参考訳): FLEXTAF: フレキシブルなタブラルフォーマットによるテーブル推論の強化
- Authors: Xuanliang Zhang, Dingzirui Wang, Longxu Dou, Baoxin Wang, Dayong Wu, Qingfu Zhu, Wanxiang Che,
- Abstract要約: フレキシブルフォーマットを用いてテーブル推論性能を向上させるためのFLEXTAF-SingleとFLEXTAF-Voteを提案する。
WikiTableQuestionsとTabFactに関する我々の実験は、平均的な2.3%と4.8%の大幅な改善を示している。
- 参考スコア(独自算出の注目度): 48.47559543509975
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The table reasoning task aims to answer the question according to the given table. Currently, using Large Language Models (LLMs) is the predominant method for table reasoning. Most existing methods employ a fixed tabular format to represent the table, which could limit the performance. Given that each instance requires different capabilities and models possess varying abilities, we assert that different instances and models suit different tabular formats. We prove the aforementioned claim through quantitative analysis of experimental results, where different instances and models achieve different performances using various tabular formats. Building on this discussion, we propose FLEXTAF-Single and FLEXTAF-Vote to enhance table reasoning performance by employing flexible tabular formats. Specifically, (i) FLEXTAF-Single trains a classifier to predict the most suitable tabular format based on the instance and the LLM. (ii) FLEXTAF-Vote integrates the results across different formats. Our experiments on WikiTableQuestions and TabFact reveal significant improvements, with average gains of 2.3% and 4.8% compared to the best performance achieved using a fixed tabular format with greedy decoding and self-consistency decoding, thereby validating the effectiveness of our methods.
- Abstract(参考訳): テーブル推論タスクは、与えられたテーブルに従って質問に答えることを目的としている。
現在、Large Language Models (LLMs) はテーブル推論の主要な手法である。
既存のほとんどのメソッドはテーブルを表現するために固定された表形式を採用しており、パフォーマンスを制限できる。
各インスタンスがさまざまな機能を必要とし、モデルがさまざまな能力を持っていることを考慮すれば、異なるインスタンスとモデルは異なる表形式に適合する、と私たちは主張する。
実験結果の定量的解析により, 様々な表形式を用いて, 異なるインスタンスやモデルで異なる性能を達成できることを示す。
本稿では,フレキシブルな表形式を用いてテーブル推論性能を向上させるためにFLEXTAF-SingleとFLEXTAF-Voteを提案する。
具体的には
i)FLEXTAF-Singleは、インスタンスとLLMに基づいて最も適切な表形式を予測するために分類器を訓練する。
(ii)FLEXTAF-Voteは、結果を異なるフォーマットで統合する。
WikiTableQuestions と TabFact に関する実験では,グリージーデコーディングと自己整合デコーディングによる固定表形式を用いて達成した最高のパフォーマンスと比較して,平均2.3%,4.8%向上した。
関連論文リスト
- ALTER: Augmentation for Large-Table-Based Reasoning [5.164923314261229]
ALTER(Augmentation for Large-Table-Based Reasoning)は、NL (Free-form Natural Language) とNL (Augmentation for Large-Table-Based Reasoning) の双方の質問において、潜在的な拡張可能性を活用するために設計されたフレームワークである。
テーブルからの関連データの小さなサブセットのみを利用することで、ALTERはテーブルベースの推論ベンチマークで優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-07-03T12:34:45Z) - LaTable: Towards Large Tabular Models [63.995130144110156]
タブラル生成基盤モデルは、異なるデータセットの不均一な特徴空間のために構築が困難である。
LaTableは、これらの課題に対処し、異なるデータセットでトレーニング可能な、新しい拡散モデルである。
LaTableは、分散生成のベースラインよりも優れており、微調整されたLaTableは、より少ないサンプルで分散データセットをより良く生成できる。
論文 参考訳(メタデータ) (2024-06-25T16:03:50Z) - TDeLTA: A Light-weight and Robust Table Detection Method based on
Learning Text Arrangement [34.73880086005418]
本稿では,学習テキストアレンジメント(TDeLTA)に基づく新しい,軽量で堅牢なテーブル検出手法を提案する。
表を正確に特定するために,表内の意味的役割に応じてテキストブロックを4つのカテゴリに分類するテキスト分類タスクを設計する。
いくつかの最先端の手法と比較して、TDeLTAは大規模な公開データセットの3.1Mモデルパラメータで競合する結果を得る。
論文 参考訳(メタデータ) (2023-12-18T09:18:43Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - HeLM: Highlighted Evidence augmented Language Model for Enhanced Table-to-Text Generation [7.69801337810352]
LLaMA2モデル上でパラメータ効率の良い微調整を行う。
我々のアプローチは、テーブル固有の行データを強調することにより、推論情報を入力に注入することである。
FetaQAデータセットとQTSummデータセットの両方で、我々のアプローチは最先端の結果を得た。
論文 参考訳(メタデータ) (2023-11-15T12:02:52Z) - UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model
in Data Science [16.384705926693073]
本研究は,データサイエンスにおける表上での予測を容易にするために,事前学習方法論の能力を拡張することを目的とする。
テーブルを一様に処理するために設計されたUniTabEは、特定のテーブル構造によって課される制約を無視する。
プレトレーニングフェーズを実装するため,Kaggleプラットフォームから正確に収集した約13Bサンプルからなる拡張データセットをキュレートした。
論文 参考訳(メタデータ) (2023-07-18T13:28:31Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
SEMv2(SEM: Split, Embed, Merge)と呼ばれるテーブル構造認識器を提案する。
本稿では,テーブル分離ラインのインスタンスレベルの識別問題に対処し,条件付き畳み込みに基づくテーブル分離ライン検出戦略を提案する。
SEMv2を包括的に評価するために、iFLYTABと呼ばれるテーブル構造認識のためのより困難なデータセットも提示する。
論文 参考訳(メタデータ) (2023-03-08T05:15:01Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
テーブル検索のタスクに焦点をあてて、"テーブル固有のモデル設計はテーブル検索に必要か?
自然質問データセット (NQ-table) の表に基づく分析の結果, 70%以上の症例では構造が無視できる役割を担っていることがわかった。
次に、テーブル構造、すなわち補助列/カラム埋め込み、ハードアテンションマスク、ソフトリレーションに基づくアテンションバイアスを明示的にエンコードする3つのモジュールを実験する。
いずれも大きな改善は得られず、テーブル固有のモデル設計がテーブル検索に不要である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:35:23Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。