SHARP-Net: A Refined Pyramid Network for Deficiency Segmentation in Culverts and Sewer Pipes
- URL: http://arxiv.org/abs/2408.08879v1
- Date: Fri, 2 Aug 2024 23:55:04 GMT
- Title: SHARP-Net: A Refined Pyramid Network for Deficiency Segmentation in Culverts and Sewer Pipes
- Authors: Rasha Alshawi, Md Meftahul Ferdaus, Md Tamjidul Hoque, Kendall Niles, Ken Pathak, Steve Sloan, Mahdi Abdelguerfi,
- Abstract summary: SHARP-Net is a novel architecture for semantic segmentation.
It integrates a bottom-up pathway featuring Inception-like blocks with varying filter sizes.
Throughout the network, depth-wise separable convolutions are used to reduce complexity.
- Score: 1.663204995903499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Semantic Haar-Adaptive Refined Pyramid Network (SHARP-Net), a novel architecture for semantic segmentation. SHARP-Net integrates a bottom-up pathway featuring Inception-like blocks with varying filter sizes (3x3$ and 5x5), parallel max-pooling, and additional spatial detection layers. This design captures multi-scale features and fine structural details. Throughout the network, depth-wise separable convolutions are used to reduce complexity. The top-down pathway of SHARP-Net focuses on generating high-resolution features through upsampling and information fusion using $1\times1$ and $3\times3$ depth-wise separable convolutions. We evaluated our model using our developed challenging Culvert-Sewer Defects dataset and the benchmark DeepGlobe Land Cover dataset. Our experimental evaluation demonstrated the base model's (excluding Haar-like features) effectiveness in handling irregular defect shapes, occlusions, and class imbalances. It outperformed state-of-the-art methods, including U-Net, CBAM U-Net, ASCU-Net, FPN, and SegFormer, achieving average improvements of 14.4% and 12.1% on the Culvert-Sewer Defects and DeepGlobe Land Cover datasets, respectively, with IoU scores of 77.2% and 70.6%. Additionally, the training time was reduced. Furthermore, the integration of carefully selected and fine-tuned Haar-like features enhanced the performance of deep learning models by at least 20%. The proposed SHARP-Net, incorporating Haar-like features, achieved an impressive IoU of 94.75%, representing a 22.74% improvement over the base model. These features were also applied to other deep learning models, showing a 35.0% improvement, proving their versatility and effectiveness. SHARP-Net thus provides a powerful and efficient solution for accurate semantic segmentation in challenging real-world scenarios.
Related papers
- Imbalance-Aware Culvert-Sewer Defect Segmentation Using an Enhanced Feature Pyramid Network [1.7466076090043157]
This paper introduces a deep learning model for the semantic segmentation of culverts and sewer pipes within imbalanced datasets.
The model employs strategies like class decomposition and data augmentation to address dataset imbalance.
Experimental results on the culvert-sewer defects dataset and a benchmark aerial semantic segmentation drone dataset show that the E-FPN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-08-19T17:40:18Z) - Depth Estimation using Weighted-loss and Transfer Learning [2.428301619698667]
We propose a simplified and adaptable approach to improve depth estimation accuracy using transfer learning and an optimized loss function.
In this study, we propose a simplified and adaptable approach to improve depth estimation accuracy using transfer learning and an optimized loss function.
The results indicate significant improvements in accuracy and robustness, with EfficientNet being the most successful architecture.
arXiv Detail & Related papers (2024-04-11T12:25:54Z) - NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Det has achieved impressive performance in indoor multi-view 3D detection by utilizing NeRF to enhance representation learning.
We present three corresponding solutions, including semantic enhancement, perspective-aware sampling, and ordinal depth supervision.
The resulting algorithm, NeRF-Det++, has exhibited appealing performance in the ScanNetV2 and AR KITScenes datasets.
arXiv Detail & Related papers (2024-02-22T11:48:06Z) - Performance Analysis of Various EfficientNet Based U-Net++ Architecture
for Automatic Building Extraction from High Resolution Satellite Images [0.0]
Building extraction heavily relies on semantic segmentation of high-resolution remote sensing imagery.
Various efficientNet backbone based U-Net++ has been proposed in this study.
According on the experimental findings, the suggested model significantly outperforms previous cutting-edge approaches.
arXiv Detail & Related papers (2023-09-05T18:14:14Z) - SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [69.10072367807095]
DPSGD requires clipping and noising of per-sample gradients.
This introduces a reduction in model utility compared to non-private training.
We distilled a new model architecture termed SmoothNet, which is characterised by increased robustness to the challenges of DP-SGD training.
arXiv Detail & Related papers (2022-05-09T07:51:54Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
We introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings.
Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset.
arXiv Detail & Related papers (2021-04-07T23:13:56Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - $P^2$ Net: Augmented Parallel-Pyramid Net for Attention Guided Pose
Estimation [69.25492391672064]
We propose an augmented Parallel-Pyramid Net with feature refinement by dilated bottleneck and attention module.
A parallel-pyramid structure is followed to compensate the information loss introduced by the network.
Our method achieves the best performance on the challenging MSCOCO and MPII datasets.
arXiv Detail & Related papers (2020-10-26T02:10:12Z) - Multi-scale Attention U-Net (MsAUNet): A Modified U-Net Architecture for
Scene Segmentation [1.713291434132985]
We propose a novel multi-scale attention network for scene segmentation by using contextual information from an image.
This network can map local features with their global counterparts with improved accuracy and emphasize on discriminative image regions.
We have evaluated our model on two standard datasets named PascalVOC2012 and ADE20k.
arXiv Detail & Related papers (2020-09-15T08:03:41Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information.
In this paper, we explore these issues from a new perspective.
We implement a kind of more flexible and efficient multi-scale cross-modal feature processing.
arXiv Detail & Related papers (2020-07-13T07:59:55Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
We propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations.
Our micro-dense block can be integrated with neural architecture search based models to boost their performance.
arXiv Detail & Related papers (2020-04-19T08:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.