A Classifier-Based Approach to Multi-Class Anomaly Detection Applied to Astronomical Time-Series
- URL: http://arxiv.org/abs/2408.08888v1
- Date: Mon, 5 Aug 2024 18:00:00 GMT
- Title: A Classifier-Based Approach to Multi-Class Anomaly Detection Applied to Astronomical Time-Series
- Authors: Rithwik Gupta, Daniel Muthukrishna, Michelle Lochner,
- Abstract summary: anomaly detection is an open problem in many scientific fields.
Most anomaly detection algorithms for astronomical time-series rely either on hand-crafted features or on features generated through unsupervised representation learning.
We introduce a novel approach that leverages the latent space of a neural network classifier for anomaly detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automating anomaly detection is an open problem in many scientific fields, particularly in time-domain astronomy, where modern telescopes generate millions of alerts per night. Currently, most anomaly detection algorithms for astronomical time-series rely either on hand-crafted features or on features generated through unsupervised representation learning, coupled with standard anomaly detection algorithms. In this work, we introduce a novel approach that leverages the latent space of a neural network classifier for anomaly detection. We then propose a new method called Multi-Class Isolation Forests (MCIF), which trains separate isolation forests for each class to derive an anomaly score for an object based on its latent space representation. This approach significantly outperforms a standard isolation forest when distinct clusters exist in the latent space. Using a simulated dataset emulating the Zwicky Transient Facility (54 anomalies and 12,040 common), our anomaly detection pipeline discovered $46\pm3$ anomalies ($\sim 85\%$ recall) after following up the top 2,000 ($\sim 15\%$) ranked objects. Furthermore, our classifier-based approach outperforms or approaches the performance of other state-of-the-art anomaly detection pipelines. Our novel method demonstrates that existing and new classifiers can be effectively repurposed for real-time anomaly detection. The code used in this work, including a Python package, is publicly available, https://github.com/Rithwik-G/AstroMCAD.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - A Classifier-Based Approach to Multi-Class Anomaly Detection for Astronomical Transients [0.0]
Real-time anomaly detection is essential for identifying rare transients in the era of large-scale astronomical surveys.
Currently, most anomaly detection algorithms for astronomical transients rely on hand-crafted features extracted from light curves.
We introduce an alternative approach to detecting anomalies: using the penultimate layer of a neural network classifier as the latent space for anomaly detection.
arXiv Detail & Related papers (2024-03-21T18:00:00Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly
Detection [6.260747047974035]
We present UniFormaly, a universal and powerful anomaly detection framework.
We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue in online encoder-based methods.
UniFormaly achieves outstanding results on various tasks and datasets.
arXiv Detail & Related papers (2023-07-24T06:04:12Z) - A Novel Self-Supervised Learning-Based Anomaly Node Detection Method
Based on an Autoencoder in Wireless Sensor Networks [4.249028315152528]
In this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed.
This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction.
Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%.
arXiv Detail & Related papers (2022-12-26T01:54:02Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data.
We propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation.
arXiv Detail & Related papers (2021-06-09T21:57:41Z) - A Deep Learning Approach for Active Anomaly Detection of Extragalactic
Transients [1.7152709285783647]
We present a variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient events.
We rank 1,129,184 events based on an anomaly score estimated using an isolation forest.
Our algorithm is able to identify these transients as anomalous well before peak, enabling real-time follow up studies.
arXiv Detail & Related papers (2021-03-22T18:02:19Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.