論文の概要: Audit-LLM: Multi-Agent Collaboration for Log-based Insider Threat Detection
- arxiv url: http://arxiv.org/abs/2408.08902v1
- Date: Mon, 12 Aug 2024 11:33:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 14:21:10.759062
- Title: Audit-LLM: Multi-Agent Collaboration for Log-based Insider Threat Detection
- Title(参考訳): Audit-LLM:ログベースのインサイダー脅威検出のためのマルチエージェント協調
- Authors: Chengyu Song, Linru Ma, Jianming Zheng, Jinzhi Liao, Hongyu Kuang, Lin Yang,
- Abstract要約: Audit-LLMは3つの協調エージェントからなるマルチエージェントログベースのインサイダー脅威検出フレームワークである。
本稿では,2つの独立実行者が推論交換を通じて結論を反復的に洗練し,合意に達するための,ペアワイズ・エビデンスに基づくマルチエージェント・ディベート(EMAD)機構を提案する。
- 参考スコア(独自算出の注目度): 16.154903877808795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log-based insider threat detection (ITD) detects malicious user activities by auditing log entries. Recently, large language models (LLMs) with strong common sense knowledge have emerged in the domain of ITD. Nevertheless, diverse activity types and overlong log files pose a significant challenge for LLMs in directly discerning malicious ones within myriads of normal activities. Furthermore, the faithfulness hallucination issue from LLMs aggravates its application difficulty in ITD, as the generated conclusion may not align with user commands and activity context. In response to these challenges, we introduce Audit-LLM, a multi-agent log-based insider threat detection framework comprising three collaborative agents: (i) the Decomposer agent, breaking down the complex ITD task into manageable sub-tasks using Chain-of-Thought (COT) reasoning;(ii) the Tool Builder agent, creating reusable tools for sub-tasks to overcome context length limitations in LLMs; and (iii) the Executor agent, generating the final detection conclusion by invoking constructed tools. To enhance conclusion accuracy, we propose a pair-wise Evidence-based Multi-agent Debate (EMAD) mechanism, where two independent Executors iteratively refine their conclusions through reasoning exchange to reach a consensus. Comprehensive experiments conducted on three publicly available ITD datasets-CERT r4.2, CERT r5.2, and PicoDomain-demonstrate the superiority of our method over existing baselines and show that the proposed EMAD significantly improves the faithfulness of explanations generated by LLMs.
- Abstract(参考訳): ログベースのインサイダー脅威検出(ITD)は、ログエントリの監査によって悪意のあるユーザアクティビティを検出する。
近年,ITD分野において,知識の豊富な大規模言語モデル (LLM) が出現している。
しかし、多種多様なアクティビティタイプやログファイルが多岐にわたる通常のアクティビティの中で悪意のあるものを直接識別する上で、LSMにとって重要な課題となっている。
さらに、LLMからの忠実な幻覚は、ユーザコマンドやアクティビティコンテキストと一致しない可能性があるため、ITDにおけるアプリケーションの難しさを増す。
これらの課題に対応するために、3つの協調エージェントからなるマルチエージェントログベースのインサイダー脅威検出フレームワークであるAudit-LLMを紹介した。
i) Decomposer エージェントは、複雑な ITD タスクを Chain-of-Thought (COT) 推論を用いて管理可能なサブタスクに分解する。
(ii)ツールビルダーエージェントで、LLMのコンテキスト長制限を克服するためにサブタスク用の再利用可能なツールを作成します。
三 施工道具の取消しにより最終検出結論を生ずる執行人代理人。
結論の精度を高めるために,2つの独立実行者が推論交換によって結論を反復的に洗練し,合意に達するという,ペアワイズ・エビデンスに基づくマルチエージェント・ディベート(EMAD)機構を提案する。
CERT r4.2, CERT r5.2, PicoDomain-demonstrate the superiority of our method over existing baselines and show that the proposed EMAD has significantly improve the faithfulness of explanations by LLMs。
関連論文リスト
- Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Large Language Models for Anomaly Detection in Computational Workflows: from Supervised Fine-Tuning to In-Context Learning [9.601067780210006]
本稿では,大規模言語モデル(LLM)を用いて,複雑なデータパターンの学習能力を活用することにより,ワークフローの異常検出を行う。
教師付き微調整 (SFT) では, 文分類のためのラベル付きデータに基づいて事前学習したLCMを微調整し, 異常を識別する。
論文 参考訳(メタデータ) (2024-07-24T16:33:04Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection [34.40206965758026]
時系列異常検出(TSAD)は、標準トレンドから逸脱する非定型パターンを特定することで、様々な産業において重要な役割を果たす。
従来のTSADモデルは、しばしばディープラーニングに依存しており、広範なトレーニングデータを必要とし、ブラックボックスとして動作する。
LLMADは,Large Language Models (LLMs) を用いて,高精度かつ解釈可能なTSAD結果を提供する新しいTSAD手法である。
論文 参考訳(メタデータ) (2024-05-24T09:07:02Z) - AuditLLM: A Tool for Auditing Large Language Models Using Multiprobe Approach [8.646131951484696]
AuditLLMは様々な大規模言語モデル(LLM)のパフォーマンスを方法論的に監査するために設計された新しいツールである。
堅牢で信頼性があり、一貫性のあるLCMは、同じ質問の可変なフレーズ付きバージョンに対する意味論的に類似した応答を生成することが期待されている。
あるレベルの矛盾が潜在的なバイアス、幻覚、その他の問題の指標であることが示されている。
論文 参考訳(メタデータ) (2024-02-14T17:31:04Z) - Enhancing Large Language Model with Decomposed Reasoning for Emotion
Cause Pair Extraction [13.245873138716044]
Emotion-Cause Pair extract (ECPE) は、感情とその原因を表す節対を文書で抽出する。
近年の成果から着想を得て,大規模言語モデル(LLM)を活用してECPEタスクに追加のトレーニングを加えることなく対処する方法について検討した。
人間の認知過程を模倣するチェーン・オブ・シントを導入し,Decomposed Emotion-Cause Chain (DECC) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T10:20:01Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
本稿では,タスク固有の命令でPLMを利用する包括的インストラクション(CINS)を提案する。
命令のスキーマ(定義、制約、プロンプト)と、ToDの3つの重要な下流タスクに対するカスタマイズされた実現を設計する。
これらのToDタスクに対して,小さな検証データを用いた現実的な数ショット学習シナリオで実験を行った。
論文 参考訳(メタデータ) (2021-09-10T03:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。