An Adaptive Differential Privacy Method Based on Federated Learning
- URL: http://arxiv.org/abs/2408.08909v1
- Date: Tue, 13 Aug 2024 13:08:11 GMT
- Title: An Adaptive Differential Privacy Method Based on Federated Learning
- Authors: Zhiqiang Wang, Xinyue Yu, Qianli Huang, Yongguang Gong,
- Abstract summary: We propose an adaptive differential privacy method based on federated learning.
It can reduce the privacy budget by about 16%, while the accuracy remains roughly the same.
- Score: 2.86006952502785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential privacy is one of the methods to solve the problem of privacy protection in federated learning. Setting the same privacy budget for each round will result in reduced accuracy in training. The existing methods of the adjustment of privacy budget consider fewer influencing factors and tend to ignore the boundaries, resulting in unreasonable privacy budgets. Therefore, we proposed an adaptive differential privacy method based on federated learning. The method sets the adjustment coefficient and scoring function according to accuracy, loss, training rounds, and the number of datasets and clients. And the privacy budget is adjusted based on them. Then the local model update is processed according to the scaling factor and the noise. Fi-nally, the server aggregates the noised local model update and distributes the noised global model. The range of parameters and the privacy of the method are analyzed. Through the experimental evaluation, it can reduce the privacy budget by about 16%, while the accuracy remains roughly the same.
Related papers
- Federated Learning With Individualized Privacy Through Client Sampling [2.0432201743624456]
We propose an adapted method for enabling Individualized Differential Privacy (IDP) in Federated Learning (FL)
We calculate client-specific sampling rates based on their heterogeneous privacy budgets and integrate them into a modified IDP-FedAvg algorithm.
The experimental results demonstrate that our approach achieves clear improvements over uniform DP baselines, reducing the trade-off between privacy and utility.
arXiv Detail & Related papers (2025-01-29T13:11:21Z) - Share Your Representation Only: Guaranteed Improvement of the
Privacy-Utility Tradeoff in Federated Learning [47.042811490685324]
Mitigating the risk of this information leakage, using state of the art differentially private algorithms, also does not come for free.
In this paper, we consider a representation learning objective that various parties collaboratively refine on a federated model, with differential privacy guarantees.
We observe a significant performance improvement over the prior work under the same small privacy budget.
arXiv Detail & Related papers (2023-09-11T14:46:55Z) - Shuffled Differentially Private Federated Learning for Time Series Data
Analytics [10.198481976376717]
We develop a privacy-preserving federated learning algorithm for time series data.
Specifically, we employ local differential privacy to extend the privacy protection trust boundary to the clients.
We also incorporate shuffle techniques to achieve a privacy amplification, mitigating the accuracy decline caused by leveraging local differential privacy.
arXiv Detail & Related papers (2023-07-30T10:30:38Z) - Fine-Tuning with Differential Privacy Necessitates an Additional
Hyperparameter Search [38.83524780461911]
We show how carefully selecting the layers being fine-tuned in the pretrained neural network allows us to establish new state-of-the-art tradeoffs between privacy and accuracy.
We achieve 77.9% accuracy for $(varepsilon, delta)= (2, 10-5)$ on CIFAR-100 for a model pretrained on ImageNet.
arXiv Detail & Related papers (2022-10-05T11:32:49Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMix is an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data.
A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset.
arXiv Detail & Related papers (2022-03-22T06:15:43Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - LDP-FL: Practical Private Aggregation in Federated Learning with Local
Differential Privacy [20.95527613004989]
Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data.
Previous works do not give a practical solution due to three issues.
Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models.
arXiv Detail & Related papers (2020-07-31T01:08:57Z) - An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks
in Federated Learning [82.80836918594231]
Federated learning improves privacy of training data by exchanging local gradients or parameters rather than raw data.
adversary can leverage local gradients and parameters to obtain local training data by launching reconstruction and membership inference attacks.
To defend such privacy attacks, many noises perturbation methods have been widely designed.
arXiv Detail & Related papers (2020-02-23T06:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.