LIA: Privacy-Preserving Data Quality Evaluation in Federated Learning Using a Lazy Influence Approximation
- URL: http://arxiv.org/abs/2205.11518v4
- Date: Mon, 25 Nov 2024 22:37:20 GMT
- Title: LIA: Privacy-Preserving Data Quality Evaluation in Federated Learning Using a Lazy Influence Approximation
- Authors: Ljubomir Rokvic, Panayiotis Danassis, Sai Praneeth Karimireddy, Boi Faltings,
- Abstract summary: In Federated Learning, it is crucial to handle low-quality, corrupted, or malicious data.
We propose a simple yet effective approach that utilizes a new influence approximation called "lazy influence"
Our method has been shown to successfully filter out biased and corrupted data in various simulated and real-world settings.
- Score: 24.920565241449335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Federated Learning, it is crucial to handle low-quality, corrupted, or malicious data. However, traditional data valuation methods are not suitable due to privacy concerns. To address this, we propose a simple yet effective approach that utilizes a new influence approximation called "lazy influence" to filter and score data while preserving privacy. To do this, each participant uses their own data to estimate the influence of another participant's batch and sends a differentially private obfuscated score to the central coordinator. Our method has been shown to successfully filter out biased and corrupted data in various simulated and real-world settings, achieving a recall rate of over $>90\%$ (sometimes up to $100\%$) while maintaining strong differential privacy guarantees with $\varepsilon \leq 1$.
Related papers
- Federated Learning with Differential Privacy: An Utility-Enhanced Approach [12.614480013684759]
Federated learning has emerged as an attractive approach to protect data privacy by eliminating the need for sharing clients' data.
Recent studies have shown that federated learning alone does not guarantee privacy, as private data may still be inferred from the uploaded parameters to the central server.
We present a modification to these vanilla differentially private algorithms based on a Haar wavelet transformation step and a novel noise injection scheme that significantly lowers the bound of the noise variance.
arXiv Detail & Related papers (2025-03-27T04:48:29Z) - An Adaptive Differential Privacy Method Based on Federated Learning [2.86006952502785]
We propose an adaptive differential privacy method based on federated learning.
It can reduce the privacy budget by about 16%, while the accuracy remains roughly the same.
arXiv Detail & Related papers (2024-08-13T13:08:11Z) - Federated Transfer Learning with Differential Privacy [21.50525027559563]
We formulate the notion of textitfederated differential privacy, which offers privacy guarantees for each data set without assuming a trusted central server.
We show that federated differential privacy is an intermediate privacy model between the well-established local and central models of differential privacy.
arXiv Detail & Related papers (2024-03-17T21:04:48Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
This paper adopts Arimoto's $alpha$-Mutual Information as a tunable privacy measure.
We formulate a general distortion-based mechanism that manipulates the original data to offer privacy protection.
arXiv Detail & Related papers (2023-10-27T16:26:14Z) - Share Your Representation Only: Guaranteed Improvement of the
Privacy-Utility Tradeoff in Federated Learning [47.042811490685324]
Mitigating the risk of this information leakage, using state of the art differentially private algorithms, also does not come for free.
In this paper, we consider a representation learning objective that various parties collaboratively refine on a federated model, with differential privacy guarantees.
We observe a significant performance improvement over the prior work under the same small privacy budget.
arXiv Detail & Related papers (2023-09-11T14:46:55Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
We study data reconstruction attacks for discrete data and analyze it under the framework of hypothesis testing.
We show that if the underlying private data takes values from a set of size $M$, then the target privacy parameter $epsilon$ can be $O(log M)$ before the adversary gains significant inferential power.
arXiv Detail & Related papers (2022-10-24T23:50:12Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
New methods designed to preserve data privacy require careful scrutiny.
Failure to preserve privacy is hard to detect, and yet can lead to catastrophic results when a system implementing a privacy-preserving'' method is attacked.
arXiv Detail & Related papers (2022-09-29T17:50:23Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Privacy-Preserving Federated Learning on Partitioned Attributes [6.661716208346423]
Federated learning empowers collaborative training without exposing local data or models.
We introduce an adversarial learning based procedure which tunes a local model to release privacy-preserving intermediate representations.
To alleviate the accuracy decline, we propose a defense method based on the forward-backward splitting algorithm.
arXiv Detail & Related papers (2021-04-29T14:49:14Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.