論文の概要: A Multi-Task and Multi-Label Classification Model for Implicit Discourse Relation Recognition
- arxiv url: http://arxiv.org/abs/2408.08971v1
- Date: Fri, 16 Aug 2024 18:47:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-20 23:16:31.254637
- Title: A Multi-Task and Multi-Label Classification Model for Implicit Discourse Relation Recognition
- Title(参考訳): インシシットな談話関係認識のためのマルチタスク・マルチラベル分類モデル
- Authors: Nelson Filipe Costa, Leila Kosseim,
- Abstract要約: 談話関係のマルチラベル表現とシングルラベル表現の両方を学習できる新しいマルチタスク分類モデルを提案する。
我々は,従来のシングルラベル分類タスクとマルチラベル分類タスクの両方でモデルを訓練し,評価する。
- 参考スコア(独自算出の注目度): 0.23020018305241333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we address the inherent ambiguity in Implicit Discourse Relation Recognition (IDRR) by introducing a novel multi-task classification model capable of learning both multi-label and single-label representations of discourse relations. Leveraging the DiscoGeM corpus, we train and evaluate our model on both multi-label and traditional single-label classification tasks. To the best of our knowledge, our work presents the first truly multi-label classifier in IDRR, establishing a benchmark for multi-label classification and achieving SOTA results in single-label classification on DiscoGeM. Additionally, we evaluate our model on the PDTB 3.0 corpus for single-label classification without any prior exposure to its data. While the performance is below the current SOTA, our model demonstrates promising results indicating potential for effective transfer learning across both corpora.
- Abstract(参考訳): 本研究では,インプリシット・ディストーク関係認識(IDRR)における固有曖昧性に対処し,マルチラベルとシングルラベルの両方の言論関係の表現を学習可能な新しいマルチタスク分類モデルを導入する。
DiscoGeMコーパスを活用することで、マルチラベルと従来のシングルラベルの分類タスクの両方でモデルをトレーニングし、評価する。
我々の知る限り、本研究はIDRRにおける最初の真のマルチラベル分類器を示し、マルチラベル分類のためのベンチマークを確立し、DiscoGeM上でのシングルラベル分類でSOTAを達成した。
さらに, PDTB 3.0コーパスを用いたシングルラベル分類において, 事前にデータに曝すことなく, モデルの評価を行った。
性能は現在のSOTAより低いが,本モデルでは両コーパス間の効果的な移動学習の可能性を示す有望な結果を示す。
関連論文リスト
- Correlative and Discriminative Label Grouping for Multi-Label Visual Prompt Tuning [12.052388861361937]
近年の研究では、ラベル間の共起関係が強調され、準最適モデルが導かれる。
ラベル間の相関関係と識別関係のバランスをとるためのマルチラベルビジュアルプロンプトチューニングフレームワークを提案する。
提案手法は,複数の事前学習モデルにおいて,競争結果とSOTA法より優れる。
論文 参考訳(メタデータ) (2025-04-14T08:52:50Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Pseudo-triplet Guided Few-shot Composed Image Retrieval [20.040511832864503]
Composed Image Retrieval (CIR)は、マルチモーダルクエリでターゲット画像を取得することを目的とした課題である。
PTG-FSCIRと呼ばれる2段階の擬似三重項誘導方式を提案する。
最初の段階では、純画像データから擬似三重項を生成するために、注意型マスキングとキャプションに基づく擬似三重項生成法を提案する。
第2段階では,3重項に基づく挑戦的CIR微調整法を提案し,擬似修正テキストに基づくサンプルの挑戦的スコア推定戦略を設計する。
論文 参考訳(メタデータ) (2024-07-08T14:53:07Z) - Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
本稿では,2つのタスク間の相互指導を実現するための2段階のフレームワークを実装した,コガイドネットと呼ばれる新しいモデルを提案する。
第1段階では,単一タスクによる教師付きコントラスト学習を提案し,第2段階ではコガイドによる教師付きコントラスト学習を提案する。
マルチインテリジェントSLU実験の結果,我々のモデルは既存のモデルよりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-22T08:06:22Z) - Improving Self-training for Cross-lingual Named Entity Recognition with
Contrastive and Prototype Learning [80.08139343603956]
言語横断的な実体認識において、自己学習は言語的ギャップを埋めるために一般的に用いられる。
本研究では,表現学習と擬似ラベル改善を組み合わせることで,言語間NERの自己学習を改善することを目的とする。
提案手法,すなわちContProtoは主に,(1)コントラスト型自己学習と(2)プロトタイプベース擬似ラベルの2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-05-23T02:52:16Z) - Cross-utterance ASR Rescoring with Graph-based Label Propagation [14.669201156515891]
本稿では,グラフに基づくラベルの伝搬を反映した新しいASR N-best仮説を提案する。
従来のニューラルネットワークモデル(LM)をベースとしたASR再構成/格付けモデルとは対照的に,本手法は音響情報に重点を置いている。
論文 参考訳(メタデータ) (2023-03-27T12:08:05Z) - A Robust Multilabel Method Integrating Rule-based Transparent Model,
Soft Label Correlation Learning and Label Noise Resistance [24.18699701732533]
本稿では,R-MLTSK-FS (Takagi-Sugeno-Kang fuzzy System) を提案する。
まず,ラベル間の相互作用を明示的に測定することで,ラベルノイズの影響を低減するソフトラベル学習機構を設計する。
第2に、規則に基づくTSK FSをベースモデルとして、特徴量とソフトラベルの推論関係を効率的にモデル化する。
第3に,マルチラベル学習の性能向上のために,ソフトラベル空間とファジィ特徴空間に基づく相関強化学習機構を構築した。
論文 参考訳(メタデータ) (2023-01-09T11:54:14Z) - Combining Metric Learning and Attention Heads For Accurate and Efficient
Multilabel Image Classification [0.0]
マルチラベル分類における2つの一般的なアプローチについて再検討する。
トランスフォーマーベースヘッドはグラフベースのブランチよりも優れた結果が得られると考えられるが、適切なトレーニング戦略により、グラフベースの手法はわずかに精度の低下を示すことができると論じる。
論文 参考訳(メタデータ) (2022-09-14T12:06:47Z) - On the Effects of Different Types of Label Noise in Multi-Label Remote
Sensing Image Classification [1.6758573326215689]
リモートセンシング(RS)画像のマルチラベル分類(MLC)のための高精度な手法の開発は、RSにおいて最も重要な研究トピックの1つである。
複数のランドカバークラスラベル (multi-labels) でアノテートされた多数の信頼できるトレーニングイメージを必要とするディープニューラルネットワークの使用は、RSで人気がある。
本稿では,3つの異なる雑音頑健なCV SLC法について検討し,RSのマルチラベル雑音シナリオに対して頑健であるように適応する。
論文 参考訳(メタデータ) (2022-07-28T09:38:30Z) - A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation [42.0958430465578]
部分多重ラベル(PML)画像分類問題について検討する。
既存のPMLメソッドは通常、ノイズの多いラベルをフィルタリングするための曖昧な戦略を設計する。
本稿では,PMLの表現能力と識別能力を高めるための深層モデルを提案する。
論文 参考訳(メタデータ) (2022-07-06T02:49:02Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
雑音ラベル付き分類ネットワークをスクラッチから学習するための新しいフレームワークであるTransductive CLIPを提案する。
擬似ラベルへの依存を軽減するために,クラス条件のコントラスト学習機構を提案する。
アンサンブルラベルは、ノイズラベル付きディープニューラルネットワークのトレーニングを安定化するための擬似ラベル更新戦略として採用されている。
論文 参考訳(メタデータ) (2022-06-13T14:04:57Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
重なり合う音声のダイアリゼーションを単一ラベル予測問題として再構成する。
話者埋め込み認識型ニューラルダイアリゼーション(SEND)システムを提案する。
論文 参考訳(メタデータ) (2022-03-18T06:40:39Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Instance-Aware Graph Convolutional Network for Multi-Label
Classification [55.131166957803345]
グラフ畳み込みニューラルネットワーク(GCN)は、マルチラベル画像認識タスクを効果的に強化した。
マルチラベル分類のための事例対応グラフ畳み込みニューラルネットワーク(IA-GCN)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-19T12:49:28Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
本稿では,教師なしのReIDを多ラベル分類タスクとして定式化し,段階的に真のラベルを求める。
提案手法は,まず,各人物画像に単一クラスラベルを割り当てることから始まり,ラベル予測のために更新されたReIDモデルを活用することで,多ラベル分類へと進化する。
マルチラベル分類におけるReIDモデルのトレーニング効率を高めるために,メモリベースマルチラベル分類損失(MMCL)を提案する。
論文 参考訳(メタデータ) (2020-04-20T12:13:43Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
機能エンジニアリングなしで、どの発話やトークンが退屈であるかを動的に認識する対話モデルを構築します。
最初のモデルMinAvgOutは、各バッチの出力分布を通して、ダイバーシティスコアを直接最大化する。
第2のモデルであるラベルファインチューニング(LFT)は、多様性スコアによって連続的にスケールされたラベルをソースシーケンスにプリペイドし、多様性レベルを制御する。
3つ目のモデルであるRLは強化学習を採用し、多様性スコアを報奨信号として扱う。
論文 参考訳(メタデータ) (2020-01-15T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。