論文の概要: ASGM-KG: Unveiling Alluvial Gold Mining Through Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2408.08972v1
- Date: Fri, 16 Aug 2024 18:48:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 23:16:31.252146
- Title: ASGM-KG: Unveiling Alluvial Gold Mining Through Knowledge Graphs
- Title(参考訳): ASGM-KG: 知識グラフで金鉱を掘り起こす
- Authors: Debashis Gupta, Aditi Golder, Luis Fernendez, Miles Silman, Greg Lersen, Fan Yang, Bob Plemmons, Sarra Alqahtani, Paul Victor Pauca,
- Abstract要約: 本稿では,ASGMの実践とその環境影響に関する重要な情報を統合し,提供する知識グラフ(ASGM-KG)を紹介する。
ASGM-KGの現在のバージョンは、大きな言語モデル(LLM)を用いて抽出された1,899個のトリプルで構成されており、非政府組織と政府組織によって公表されている。
我々のフレームワークは、公開されている知識グラフ上で5つのベースラインを実行し、ドメインの専門家によって検証されたASGM-KG上で90以上の精度を達成する。
- 参考スコア(独自算出の注目度): 1.927349189123311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artisanal and Small-Scale Gold Mining (ASGM) is a low-cost yet highly destructive mining practice, leading to environmental disasters across the world's tropical watersheds. The topic of ASGM spans multiple domains of research and information, including natural and social systems, and knowledge is often atomized across a diversity of media and documents. We therefore introduce a knowledge graph (ASGM-KG) that consolidates and provides crucial information about ASGM practices and their environmental effects. The current version of ASGM-KG consists of 1,899 triples extracted using a large language model (LLM) from documents and reports published by both non-governmental and governmental organizations. These documents were carefully selected by a group of tropical ecologists with expertise in ASGM. This knowledge graph was validated using two methods. First, a small team of ASGM experts reviewed and labeled triples as factual or non-factual. Second, we devised and applied an automated factual reduction framework that relies on a search engine and an LLM for labeling triples. Our framework performs as well as five baselines on a publicly available knowledge graph and achieves over 90 accuracy on our ASGM-KG validated by domain experts. ASGM-KG demonstrates an advancement in knowledge aggregation and representation for complex, interdisciplinary environmental crises such as ASGM.
- Abstract(参考訳): アーティサナール・アンド・スモールスケールの金鉱業(ASGM)は低コストで破壊的な鉱業であり、世界中の熱帯の流域で環境災害を引き起こしている。
ASGMのトピックは、自然と社会システムを含む複数の研究と情報の領域にまたがっており、知識はメディアや文書の多様性にまたがって微粒化されることが多い。
そこで我々は,ASGMの実践とその環境効果に関する重要な情報を統合し,提供する知識グラフ(ASGM-KG)を導入する。
ASGM-KGの現在のバージョンは、大きな言語モデル(LLM)を用いて抽出された1,899個のトリプルで構成されており、非政府組織と政府組織によって公表されている。
これらの文書は、ASGMの専門知識を持つ熱帯生態学者のグループによって慎重に選択された。
この知識グラフは2つの手法を用いて検証された。
まず、ASGMの専門家の小さなチームが、トリプルを事実または非事実としてレビューし、ラベル付けした。
第2に,三重項のラベル付けに検索エンジンとLLMを利用する自動実写還元フレームワークを考案し,適用した。
我々のフレームワークは、公開されている知識グラフ上で5つのベースラインを実行し、ドメインの専門家によって検証されたASGM-KG上で90以上の精度を達成する。
ASGM-KGは、ASGMのような複雑な学際的な環境危機に対する知識集約と表現の進歩を示す。
関連論文リスト
- PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
地質図は地質学の基本的な図として、地球の地下と地表の構造と構成に関する重要な洞察を提供する。
その重要性にもかかわらず、現在のマルチモーダル大言語モデル(MLLM)は地質図の理解に乏しいことが多い。
このギャップを定量化するために、地質地図理解においてMLLMを評価するための最初のベンチマークであるGeoMap-Benchを構築した。
論文 参考訳(メタデータ) (2025-01-10T18:59:42Z) - Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective [13.905336639352404]
この研究は、無料テキストからゼロショットの知識グラフフレームワークであるGraphusionを導入している。
ステップ1では、トピックモデリングを用いてシードエンティティのリストを抽出し、最終KGに最も関連性の高いエンティティを導く。
ステップ2ではLSMを用いて候補三重項抽出を行い、ステップ3では抽出した知識のグローバルなビューを提供する新しい融合モジュールを設計する。
論文 参考訳(メタデータ) (2024-10-23T06:54:03Z) - Comprehending Knowledge Graphs with Large Language Models for Recommender Systems [13.270018897057293]
知識グラフを改善するために,CoLaKGと呼ばれる新しい手法を提案する。
CoLaKGは大規模な言語モデル(LLM)を使用してKGベースのレコメンデーションを改善する。
論文 参考訳(メタデータ) (2024-10-16T04:44:34Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - From Large Language Models to Knowledge Graphs for Biomarker Discovery
in Cancer [0.9437165725355702]
人工知能(AI)の難しいシナリオは、バイオメディカルデータを使用して、がんの病態の診断と治療のレコメンデーションを提供することである。
大規模知識グラフ(KG)は、意味的相互関連エンティティや関係に関する事実の統合と抽出によって構築することができる。
本稿では,癌特異的バイオマーカー発見と対話型QAを活用するドメインKGを開発する。
論文 参考訳(メタデータ) (2023-10-12T14:36:13Z) - A Biomedical Knowledge Graph for Biomarker Discovery in Cancer [1.7860709946876898]
ドメイン固有知識グラフ(ドメイン特化知識グラフ、英: Domain-specific knowledge graph、KG)は、特定の主語・母語領域の明示的な概念化である。
KGは、がん関連の知識と複数のソースからの事実を統合することで構築される。
我々は、いくつかのクエリといくつかのQAの例を列挙し、KGに基づいた知識を導出する。
論文 参考訳(メタデータ) (2023-02-09T16:17:57Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
我々は,KG の完成に向けた科学的 LM の研究を行い,生物医学的リンク予測を強化するために,その潜在知識を活用できるかどうかを探る。
LMモデルとKG埋め込みモデルを統合し,各入力例をいずれかのモデルに割り当てることを学ぶルータ法を用いて,性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-06-17T17:55:33Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
本稿では,論文のコントリビューションと作業状況について,個別の要約を生成するために,論文要約のアンタングル化という新たなタスクを導入する。
本稿では,学術論文のS2ORCコーパスを拡張し,コントリビューション・コントリビューション・コントリビューション・レファレンス・ラベルを付加する。
本稿では, 生成した出力の関連性, 新規性, 絡み合いを報告する総合的自動評価プロトコルを提案する。
論文 参考訳(メタデータ) (2020-11-06T02:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。