論文の概要: Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective
- arxiv url: http://arxiv.org/abs/2410.17600v1
- Date: Wed, 23 Oct 2024 06:54:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:57:00.784806
- Title: Graphusion: A RAG Framework for Knowledge Graph Construction with a Global Perspective
- Title(参考訳): Graphusion: グローバルな視点による知識グラフ構築のためのRAGフレームワーク
- Authors: Rui Yang, Boming Yang, Aosong Feng, Sixun Ouyang, Moritz Blum, Tianwei She, Yuang Jiang, Freddy Lecue, Jinghui Lu, Irene Li,
- Abstract要約: この研究は、無料テキストからゼロショットの知識グラフフレームワークであるGraphusionを導入している。
ステップ1では、トピックモデリングを用いてシードエンティティのリストを抽出し、最終KGに最も関連性の高いエンティティを導く。
ステップ2ではLSMを用いて候補三重項抽出を行い、ステップ3では抽出した知識のグローバルなビューを提供する新しい融合モジュールを設計する。
- 参考スコア(独自算出の注目度): 13.905336639352404
- License:
- Abstract: Knowledge Graphs (KGs) are crucial in the field of artificial intelligence and are widely used in downstream tasks, such as question-answering (QA). The construction of KGs typically requires significant effort from domain experts. Large Language Models (LLMs) have recently been used for Knowledge Graph Construction (KGC). However, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents, missing a fusion process to combine the knowledge in a global KG. This work introduces Graphusion, a zero-shot KGC framework from free text. It contains three steps: in Step 1, we extract a list of seed entities using topic modeling to guide the final KG includes the most relevant entities; in Step 2, we conduct candidate triplet extraction using LLMs; in Step 3, we design the novel fusion module that provides a global view of the extracted knowledge, incorporating entity merging, conflict resolution, and novel triplet discovery. Results show that Graphusion achieves scores of 2.92 and 2.37 out of 3 for entity extraction and relation recognition, respectively. Moreover, we showcase how Graphusion could be applied to the Natural Language Processing (NLP) domain and validate it in an educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for QA, comprising six tasks and a total of 1,200 QA pairs. Using the Graphusion-constructed KG, we achieve a significant improvement on the benchmark, for example, a 9.2% accuracy improvement on sub-graph completion.
- Abstract(参考訳): 知識グラフ(KG)は人工知能の分野で重要であり、質問応答(QA)などの下流タスクで広く使われている。
KGの構築は通常、ドメインの専門家による多大な努力を必要とする。
大規模言語モデル(LLM)は、最近、知識グラフ構築(KGC)に使われている。
しかし、既存のほとんどのアプローチは、局所的な視点に焦点を当て、個々の文や文書から知識三重項を抽出し、グローバルなKGにおける知識を組み合わせるための融合過程を欠いている。
この研究は、無料テキストからゼロショットのKGCフレームワークであるGraphusionを導入している。
ステップ1では、トピックモデリングを用いてシードエンティティのリストを抽出し、最も関連性の高いエンティティを含む。ステップ2では、LSMを用いた候補三重項抽出を行い、ステップ3では、抽出した知識のグローバルなビューを提供する新しい融合モジュールを設計し、エンティティのマージ、コンフリクト解決、新規三重項発見を取り入れる。
その結果、Graphusionはエンティティ抽出と関係認識の3点中2.92点と2.37点のスコアをそれぞれ達成していることがわかった。
さらに,Graphusionを自然言語処理(NLP)ドメインに適用し,それを教育シナリオで検証する方法について述べる。
具体的には、6つのタスクと合計1,200のQAペアからなる、新しいQAのエキスパート検証ベンチマークであるTutorQAを紹介する。
Graphusion-Constructed KGを用いて、ベンチマークの大幅な改善、例えば、サブグラフ補完の9.2%の精度向上を実現した。
関連論文リスト
- iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models [0.7165255458140439]
iText2KGは、後処理なしで漸進的にトピックに依存しない知識グラフを構築する方法である。
提案手法は,3つのシナリオにまたがるベースライン手法と比較して,優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-05T06:49:14Z) - Exploiting Large Language Models Capabilities for Question Answer-Driven Knowledge Graph Completion Across Static and Temporal Domains [8.472388165833292]
本稿では,GS-KGC(Generative Subgraph-based KGC)と呼ばれる新しい生成完了フレームワークを提案する。
GS-KGCは、ターゲットエンティティを直接生成するために質問応答形式を採用し、複数の可能な答えを持つ質問の課題に対処する。
本手法は,新たな情報発見を容易にするために,既知の事実を用いて負のサンプルを生成する。
論文 参考訳(メタデータ) (2024-08-20T13:13:41Z) - Graphusion: Leveraging Large Language Models for Scientific Knowledge Graph Fusion and Construction in NLP Education [14.368011453534596]
フリーテキストからのゼロショット知識グラフフレームワークであるGraphusionを紹介する。
核融合モジュールは、エンティティのマージ、競合解決、新しい三重項発見を取り入れた三重項のグローバルなビューを提供する。
本評価は,リンク予測における教師付きベースラインの精度を最大10%超えることを示す。
論文 参考訳(メタデータ) (2024-07-15T15:13:49Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language
Models [53.09723678623779]
本稿では,高品質なクエリプロンプトを自動的に生成し,大規模テキストコーパスからサポート情報を取得するためのTAGREALを提案する。
その結果、TAGREALは2つのベンチマークデータセット上で最先端のパフォーマンスを達成することがわかった。
TAGREALは、限られたトレーニングデータであっても、既存の埋め込みベース、グラフベース、およびPLMベースの手法よりも優れた性能を有することが判明した。
論文 参考訳(メタデータ) (2023-05-24T22:09:35Z) - VEM$^2$L: A Plug-and-play Framework for Fusing Text and Structure
Knowledge on Sparse Knowledge Graph Completion [14.537509860565706]
本稿では,テキストから抽出した知識と構造化メッセージから抽出した知識を統一化するための,スパース知識グラフ上のプラグイン・アンド・プレイ・フレームワーク VEM2L を提案する。
具体的には、モデルによって得られた知識を2つの非重複部分に分割する。
また、モデルの一般化能力を融合させるために、変分EMアルゴリズムによって証明された新しい融合戦略を提案する。
論文 参考訳(メタデータ) (2022-07-04T15:50:21Z) - Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus [59.20235923987045]
知識表現の質を維持しながら、新たに収穫した3倍の知識グラフを豊かにすることは困難である。
本稿では,付加コーパスから得られる情報を用いてKGを精製するシステムを提案する。
論文 参考訳(メタデータ) (2022-06-15T12:16:10Z) - KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization
and Completion [99.47414073164656]
包括的知識グラフ(KG)は、インスタンスレベルのエンティティグラフとオントロジーレベルの概念グラフを含む。
2ビューのKGは、知識の抽象化、包括化、完成に関する人間の能力を「シミュレーション」するためのモデルのためのテストベッドを提供する。
我々は,データセットのスケール,タスクカバレッジ,難易度の観点から,既存のベンチマークを改善した統一KGベンチマークを提案する。
論文 参考訳(メタデータ) (2020-04-28T16:21:57Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
知識グラフ(KG)質問生成(QG)は,KGから自然言語質問を生成することを目的とする。
本研究は,KGサブグラフから質問を生成し,回答をターゲットとする,より現実的な環境に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T15:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。