論文の概要: Electroencephalogram Emotion Recognition via AUC Maximization
- arxiv url: http://arxiv.org/abs/2408.08979v1
- Date: Fri, 16 Aug 2024 19:08:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 23:16:31.239717
- Title: Electroencephalogram Emotion Recognition via AUC Maximization
- Title(参考訳): AUC最大化による脳波感情認識
- Authors: Minheng Xiao, Shi Bo,
- Abstract要約: 不均衡データセットは神経科学、認知科学、医学診断などの分野で大きな課題を提起する。
本研究は,DEAPデータセットにおけるライキングラベルを例として,イシュークラスの不均衡に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imbalanced datasets pose significant challenges in areas including neuroscience, cognitive science, and medical diagnostics, where accurately detecting minority classes is essential for robust model performance. This study addresses the issue of class imbalance, using the `Liking' label in the DEAP dataset as an example. Such imbalances are often overlooked by prior research, which typically focuses on the more balanced arousal and valence labels and predominantly uses accuracy metrics to measure model performance. To tackle this issue, we adopt numerical optimization techniques aimed at maximizing the area under the curve (AUC), thus enhancing the detection of underrepresented classes. Our approach, which begins with a linear classifier, is compared against traditional linear classifiers, including logistic regression and support vector machines (SVM). Our method significantly outperforms these models, increasing recall from 41.6\% to 79.7\% and improving the F1-score from 0.506 to 0.632. These results highlight the efficacy of AUC maximization via numerical optimization in managing imbalanced datasets, providing an effective solution for enhancing predictive accuracy in detecting minority but crucial classes in out-of-sample datasets.
- Abstract(参考訳): 不均衡データセットは、神経科学、認知科学、医学診断などの領域において重要な課題を生じさせ、モデルパフォーマンスの堅牢化には少数派クラスを正確に検出することが不可欠である。
本研究では,DEAPデータセットの 'Liking' ラベルを例に,クラス不均衡の問題に対処する。
このような不均衡はしばしば先行研究によって見落とされ、通常はよりバランスのとれた覚醒ラベルと価値ラベルに焦点が当てられ、主にモデルの性能を測定するために精度の指標を使用する。
この問題に対処するために,曲線下領域(AUC)の最大化を目的とした数値最適化手法を採用した。
我々の手法は線形分類器から始まり、ロジスティック回帰やサポートベクトルマシン(SVM)を含む従来の線形分類器と比較される。
その結果,F1スコアは0.506から0.632に改善され,リコール率は41.6\%から79.7\%に向上した。
これらの結果は、不均衡なデータセットを管理する際の数値最適化によるAUC最大化の有効性を強調し、サンプル外データセットにおける少数だが重要なクラスを検出するための予測精度を高める効果的なソリューションを提供する。
関連論文リスト
- Intuitionistic Fuzzy Universum Twin Support Vector Machine for Imbalanced Data [0.0]
機械学習手法の大きな問題の1つは、不均衡なデータセットを分類することである。
不均衡データ(IFUTSVM-ID)のための直観的ファジィユニバームツインサポートベクトルマシンを提案する。
雑音や外周の影響を軽減するため,直観主義的なファジィ・メンバシップ・スキームを用いる。
論文 参考訳(メタデータ) (2024-10-27T04:25:42Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
クラス増分学習は,限定された新規クラスサンプルを用いて,新規クラスを継続的に認識することを目的としている。
最近の手法では,段階的なセッションで特徴抽出器を微調整することにより,ベースクラスとインクリメンタルクラスの精度の不均衡を緩和している。
本研究では,FSCIL問題におけるモデルバイアスを緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T10:37:41Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
自閉症スペクトラム障害(Autistic Spectrum disorder、ASD)は、社会的相互作用、コミュニケーション、反復活動の困難を特徴とする神経疾患である。
本研究は,診断プロセスの強化と自動化を目的として,多様な機械学習手法を用いて重要なASD特性を同定する。
論文 参考訳(メタデータ) (2023-09-20T21:23:37Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
我々は、強化学習のためのモデルに依存しないコントラスト駆動学習フレームワーク(CCLF)を開発した。
CCLFは、サンプルの重要性を完全に活用し、自己管理的な学習効率を向上させる。
このアプローチをDeepMind Control Suite、Atari、MiniGridベンチマークで評価する。
論文 参考訳(メタデータ) (2022-05-02T14:42:05Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
ROC曲線 (AUC) の下の領域は、不均衡学習やレコメンダシステムといった問題に対するよく知られたランキング基準である。
本稿では,マルチクラスAUCメトリクスを最適化することで,多クラススコアリング関数を学習する問題について検討する。
論文 参考訳(メタデータ) (2021-07-28T05:18:10Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。