論文の概要: Deep Generative Classification of Blood Cell Morphology
- arxiv url: http://arxiv.org/abs/2408.08982v2
- Date: Mon, 18 Nov 2024 21:08:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:33:46.098752
- Title: Deep Generative Classification of Blood Cell Morphology
- Title(参考訳): 血液細胞形態の深層的分類
- Authors: Simon Deltadahl, Julian Gilbey, Christine Van Laer, Nancy Boeckx, Mathie Leers, Tanya Freeman, Laura Aiken, Timothy Farren, Matthew Smith, Mohamad Zeina, BloodCounts consortium, James HF Rudd, Concetta Piazzese, Joseph Taylor, Nicholas Gleadall, Carola-Bibiane Schönlieb, Suthesh Sivapalaratnam, Michael Roberts, Parashkev Nachev,
- Abstract要約: 細胞形態を効果的にモデル化する拡散型分類器であるCytoDiffusionを紹介する。
本手法は異常検出における最先端の識別モデルよりも優れている。
直接解釈可能な逆ファクト・ヒートマップの生成によりモデル説明可能性を向上させる。
- 参考スコア(独自算出の注目度): 7.494975467007647
- License:
- Abstract: Accurate classification of haematological cells is critical for diagnosing blood disorders, but presents significant challenges for machine automation owing to the complexity of cell morphology, heterogeneities of biological, pathological, and imaging characteristics, and the imbalance of cell type frequencies. We introduce CytoDiffusion, a diffusion-based classifier that effectively models blood cell morphology, combining accurate classification with robust anomaly detection, resistance to distributional shifts, interpretability, data efficiency, and superhuman uncertainty quantification. Our approach outperforms state-of-the-art discriminative models in anomaly detection (AUC 0.990 vs. 0.918), resistance to domain shifts (85.85% vs. 74.38% balanced accuracy), and performance in low-data regimes (95.88% vs. 94.95% balanced accuracy). Notably, our model generates synthetic blood cell images that are nearly indistinguishable from real images, as demonstrated by an authenticity test in which expert haematologists achieved only 52.3% accuracy (95% CI: [50.5%, 54.2%]) in distinguishing real from generated images. Furthermore, we enhance model explainability through the generation of directly interpretable counterfactual heatmaps. Our comprehensive evaluation framework, encompassing these multiple performance dimensions, establishes a new benchmark for medical image analysis in haematology, ultimately enabling improved diagnostic accuracy in clinical settings. Our code is available at https://github.com/CambridgeCIA/CytoDiffusion.
- Abstract(参考訳): 造血細胞の正確な分類は、血液疾患の診断に重要であるが、細胞形態の複雑さ、生物学的、病理学的、画像学的特徴の不均一性、および細胞型頻度の不均衡により、機械の自動化に重大な課題をもたらす。
血液細胞形態を効果的にモデル化する拡散型分類器であるCytoDiffusionを導入し,ロバストな異常検出,分布変化に対する耐性,解釈可能性,データ効率,超人的不確実性定量化を精度良く組み合わせた。
提案手法は、異常検出における最先端判別モデル(AUC 0.990 vs. 0.918)、ドメインシフトに対する耐性(85.85%対74.38%のバランス精度)、低データ体制における性能(95.88%対94.95%のバランス精度)に優れる。
特に,本モデルでは実画像とほぼ区別できない合成血球画像を生成し,52.3%の精度(95% CI: [50.5%,54.2%])で実画像と実画像とを区別した。
さらに,直接解釈可能な対物熱マップの生成により,モデル説明可能性を向上させる。
総合的な評価フレームワークは,これらの多面的な評価範囲を包含し,血行動態学における医療画像解析のための新しいベンチマークを確立し,最終的に臨床現場における診断精度の向上を可能にした。
私たちのコードはhttps://github.com/CambridgeCIA/CytoDiffusion.comで公開されています。
関連論文リスト
- Capsule Endoscopy Multi-classification via Gated Attention and Wavelet Transformations [1.5146068448101746]
消化管の異常は患者の健康に大きく影響を与え、タイムリーな診断が必要である。
この研究は、ビデオフレームから消化管の異常を分類するために設計された新しいモデルの開発と評価のプロセスを示す。
Omni次元のGated Attention(OGA)機構とWavelet変換技術をモデルアーキテクチャに統合することで、モデルは最も重要な領域に集中することができた。
このモデルの性能は、VGG16とResNet50の2つのベースモデルに対してベンチマークされ、胃腸の異常範囲を正確に識別し分類する能力の強化が示されている。
論文 参考訳(メタデータ) (2024-10-25T08:01:35Z) - Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
本研究では、トランスフォーマーと畳み込みニューラルネットワーク(CNN)の利点を組み合わせて分類性能を向上させるハイブリッドモデルを提案する。
GastroVisionデータセットでは,精度,リコール,F1スコア,精度,マシューズ相関係数(MCC)が0.8320,0.8386,0.8324,0.8386,0.8191であった。
論文 参考訳(メタデータ) (2024-08-20T11:05:32Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - BloodCell-Net: A lightweight convolutional neural network for the classification of all microscopic blood cell images of the human body [0.0]
血液の分類と測定は、様々な血液関連疾患の診断に不可欠である。
我々は, 血液スミア画像から血液細胞分類と計数を行うためのDLベースの自動システムを提案する。
赤血球,赤血球,好中球,好中球,好酸球,好酸球,リンパ球,単球,未成熟顆粒球,血小板の計9種類の血液細胞を同定した。
論文 参考訳(メタデータ) (2024-04-01T20:38:58Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
本稿では,UNetをベースとしたセグメンテーション手法を提案する。
これは、フックスのジストロフィーの全度にわたって、信頼できるCE形態計測と腸骨同定を実現する。
論文 参考訳(メタデータ) (2022-10-13T15:34:20Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
本稿では,属性に基づく医用画像診断のためのハイブリッド型ニューロ確率推論アルゴリズムを提案する。
我々は,ハイブリッド推論アルゴリズムを2つの困難な画像診断タスクに適用することに成功している。
論文 参考訳(メタデータ) (2022-08-19T12:06:46Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
我々は、顕微鏡的末梢血細胞画像データセットに基づいて、27の人気の深層畳み込みニューラルネットワークアーキテクチャをベンチマークした。
血液細胞分類のためのImageNetデータセットに事前トレーニングされた最先端画像分類モデルを微調整する。
論文 参考訳(メタデータ) (2021-10-18T17:56:07Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
本稿では,深層畳み込みニューラルネットワーク(cnns)を用いた顕微鏡細胞画像からの全検出タスクを自動化した。
ネットワークのより優れた一般化を達成するために、様々なデータ拡張と前処理が組み込まれている。
提案する重み付きアンサンブルモデルでは, アンサンブル候補のカッパ値を重みとして, 重み付きF1スコア88.6 %, バランス付き精度86.2 %, 予備試験セットのAUC0.941を出力した。
論文 参考訳(メタデータ) (2021-05-09T18:58:48Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。