G-RAG: Knowledge Expansion in Material Science
- URL: http://arxiv.org/abs/2411.14592v1
- Date: Thu, 21 Nov 2024 21:22:58 GMT
- Title: G-RAG: Knowledge Expansion in Material Science
- Authors: Radeen Mostafa, Mirza Nihal Baig, Mashaekh Tausif Ehsan, Jakir Hasan,
- Abstract summary: Graph RAG integrates graph databases to enhance the retrieval process.
We implement an agent-based parsing technique to achieve a more detailed representation of the documents.
- Score: 0.0
- License:
- Abstract: In the field of Material Science, effective information retrieval systems are essential for facilitating research. Traditional Retrieval-Augmented Generation (RAG) approaches in Large Language Models (LLMs) often encounter challenges such as outdated information, hallucinations, limited interpretability due to context constraints, and inaccurate retrieval. To address these issues, Graph RAG integrates graph databases to enhance the retrieval process. Our proposed method processes Material Science documents by extracting key entities (referred to as MatIDs) from sentences, which are then utilized to query external Wikipedia knowledge bases (KBs) for additional relevant information. We implement an agent-based parsing technique to achieve a more detailed representation of the documents. Our improved version of Graph RAG called G-RAG further leverages a graph database to capture relationships between these entities, improving both retrieval accuracy and contextual understanding. This enhanced approach demonstrates significant improvements in performance for domains that require precise information retrieval, such as Material Science.
Related papers
- Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
We propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG)
We leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR)
arXiv Detail & Related papers (2024-10-17T17:03:23Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video.
By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions.
GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction [1.0390583509657403]
We introduce a novel approach based on a combination, called HybridRAG, of the Knowledge Graphs (KGs) based RAG techniques.
We show that HybridRAG which retrieves context from both vector database and KG outperforms both traditional VectorRAG and GraphRAG individually.
The proposed technique has applications beyond the financial domain.
arXiv Detail & Related papers (2024-08-09T09:07:48Z) - Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-guided Retrieval Augmented Generation [14.448198170932226]
Think-on-Graph 2.0 (ToG-2) is a hybrid RAG framework that iteratively retrieves information from both unstructured and structured knowledge sources.
ToG-2 alternates between graph retrieval and context retrieval to search for in-depth clues relevant to the question.
Extensive experiments show that ToG-2 achieves state-of-the-art (SOTA) performance on 6 out of 7 knowledge-intensive datasets with GPT-3.5.
arXiv Detail & Related papers (2024-07-15T15:20:40Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Query-Specific Knowledge Graphs for Complex Finance Topics [6.599344783327053]
We focus on the CODEC dataset, where domain experts create challenging questions.
We show that state-of-the-art ranking systems have headroom for improvement.
We demonstrate that entity and document relevance are positively correlated.
arXiv Detail & Related papers (2022-11-08T10:21:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.