Dynamic Neural Dowker Network: Approximating Persistent Homology in Dynamic Directed Graphs
- URL: http://arxiv.org/abs/2408.09123v1
- Date: Sat, 17 Aug 2024 07:13:12 GMT
- Title: Dynamic Neural Dowker Network: Approximating Persistent Homology in Dynamic Directed Graphs
- Authors: Hao Li, Hao Jiang, Jiajun Fan, Dongsheng Ye, Liang Du,
- Abstract summary: This paper introduces the Dynamic Neural Dowker Network (DNDN), a novel framework specifically designed to approximate the results of dynamic Dowker filtration.
Our approach is validated through comprehensive experiments on real-world datasets.
- Score: 11.646514065979323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Persistent homology, a fundamental technique within Topological Data Analysis (TDA), captures structural and shape characteristics of graphs, yet encounters computational difficulties when applied to dynamic directed graphs. This paper introduces the Dynamic Neural Dowker Network (DNDN), a novel framework specifically designed to approximate the results of dynamic Dowker filtration, aiming to capture the high-order topological features of dynamic directed graphs. Our approach creatively uses line graph transformations to produce both source and sink line graphs, highlighting the shared neighbor structures that Dowker complexes focus on. The DNDN incorporates a Source-Sink Line Graph Neural Network (SSLGNN) layer to effectively capture the neighborhood relationships among dynamic edges. Additionally, we introduce an innovative duality edge fusion mechanism, ensuring that the results for both the sink and source line graphs adhere to the duality principle intrinsic to Dowker complexes. Our approach is validated through comprehensive experiments on real-world datasets, demonstrating DNDN's capability not only to effectively approximate dynamic Dowker filtration results but also to perform exceptionally in dynamic graph classification tasks.
Related papers
- Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
We propose Dual-Frequency Filtering Self-aware Graph Neural Networks (DFGNN)
DFGNN integrates low-pass and high-pass filters to extract smooth and detailed topological features.
It dynamically adjusts filtering ratios to accommodate both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-11-18T04:57:05Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Resilient Graph Neural Networks: A Coupled Dynamical Systems Approach [12.856220339384269]
Graph Neural Networks (GNNs) have established themselves as a key component in addressing diverse graph-based tasks.
Despite their notable successes, GNNs remain susceptible to input perturbations in the form of adversarial attacks.
This paper introduces an innovative approach to fortify GNNs against adversarial perturbations through the lens of coupled dynamical systems.
arXiv Detail & Related papers (2023-11-12T20:06:48Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
This paper focuses on representation learning for dynamic graphs with temporal interactions.
We propose a generic differential model for dynamic graphs that characterises the continuously dynamic evolution of node embedding trajectories.
Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without integration by segments.
arXiv Detail & Related papers (2023-02-22T12:59:38Z) - Directed Acyclic Graph Structure Learning from Dynamic Graphs [44.21230819336437]
Estimating the structure of directed acyclic graphs (DAGs) of features (variables) plays a vital role in revealing the latent data generation process.
We study the learning problem of node feature generation mechanism on such ubiquitous dynamic graph data.
arXiv Detail & Related papers (2022-11-30T14:22:01Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
We present a novel Transformer-based Anomaly Detection framework for DYnamic graph (TADDY)
Our framework constructs a comprehensive node encoding strategy to better represent each node's structural and temporal roles in an evolving graphs stream.
Our proposed TADDY framework outperforms the state-of-the-art methods by a large margin on four real-world datasets.
arXiv Detail & Related papers (2021-06-18T02:27:19Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.