SA-GDA: Spectral Augmentation for Graph Domain Adaptation
- URL: http://arxiv.org/abs/2408.09189v1
- Date: Sat, 17 Aug 2024 13:01:45 GMT
- Title: SA-GDA: Spectral Augmentation for Graph Domain Adaptation
- Authors: Jinhui Pang, Zixuan Wang, Jiliang Tang, Mingyan Xiao, Nan Yin,
- Abstract summary: Graph neural networks (GNNs) have achieved impressive impressions for graph-related tasks.
This paper presents the textitSpectral Augmentation for Graph Domain Adaptation (method) for graph node classification.
We develop a dual graph convolutional network to jointly exploits local and global consistency for feature aggregation.
- Score: 38.71041292000361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have achieved impressive impressions for graph-related tasks. However, most GNNs are primarily studied under the cases of signal domain with supervised training, which requires abundant task-specific labels and is difficult to transfer to other domains. There are few works focused on domain adaptation for graph node classification. They mainly focused on aligning the feature space of the source and target domains, without considering the feature alignment between different categories, which may lead to confusion of classification in the target domain. However, due to the scarcity of labels of the target domain, we cannot directly perform effective alignment of categories from different domains, which makes the problem more challenging. In this paper, we present the \textit{Spectral Augmentation for Graph Domain Adaptation (\method{})} for graph node classification. First, we observe that nodes with the same category in different domains exhibit similar characteristics in the spectral domain, while different classes are quite different. Following the observation, we align the category feature space of different domains in the spectral domain instead of aligning the whole features space, and we theoretical proof the stability of proposed \method{}. Then, we develop a dual graph convolutional network to jointly exploits local and global consistency for feature aggregation. Last, we utilize a domain classifier with an adversarial learning submodule to facilitate knowledge transfer between different domain graphs. Experimental results on a variety of publicly available datasets reveal the effectiveness of our \method{}.
Related papers
- Semi-supervised Domain Adaptation in Graph Transfer Learning [24.32465362708831]
Unsupervised domain adaptation on graphs aims for knowledge transfer from label-rich source graphs to unlabeled target graphs.
This imposes critical challenges on graph transfer learning due to serious domain shifts and label scarcity.
We propose a method named Semi-supervised Graph Domain Adaptation (SGDA) to address these challenges.
arXiv Detail & Related papers (2023-09-19T17:20:58Z) - Unsupervised Domain Adaptation for Point Cloud Semantic Segmentation via
Graph Matching [14.876681993079062]
We propose a graph-based framework to explore the local-level feature alignment between the two domains.
We also formulate a category-guided contrastive loss to guide the segmentation model to learn discriminative features on the target domain.
arXiv Detail & Related papers (2022-08-09T02:30:15Z) - Zero-shot Domain Adaptation of Heterogeneous Graphs via Knowledge
Transfer Networks [72.82524864001691]
heterogeneous graph neural networks (HGNNs) have shown superior performance as powerful representation learning techniques.
There is no direct way to learn using labels rooted at different node types.
In this work, we propose a novel domain adaptation method, Knowledge Transfer Networks for HGNNs (HGNN-KTN)
arXiv Detail & Related papers (2022-03-03T21:00:23Z) - Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation [78.28390172958643]
We identify two key aspects that can help to alleviate multiple domain-shifts in the multi-target domain adaptation (MTDA)
We propose Curriculum Graph Co-Teaching (CGCT) that uses a dual classifier head, with one of them being a graph convolutional network (GCN) which aggregates features from similar samples across the domains.
When the domain labels are available, we propose Domain-aware Curriculum Learning (DCL), a sequential adaptation strategy that first adapts on the easier target domains, followed by the harder ones.
arXiv Detail & Related papers (2021-04-01T23:41:41Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - Adversarial Graph Representation Adaptation for Cross-Domain Facial
Expression Recognition [86.25926461936412]
We propose a novel Adrialversa Graph Representation Adaptation (AGRA) framework that unifies graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair experiments on several popular benchmarks and show that the proposed AGRA framework achieves superior performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T13:27:24Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.