論文の概要: FQGA-single: Towards Fewer Training Epochs and Fewer Model Parameters for Image-to-Image Translation Tasks
- arxiv url: http://arxiv.org/abs/2408.09218v3
- Date: Thu, 22 Aug 2024 11:23:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 12:42:26.322653
- Title: FQGA-single: Towards Fewer Training Epochs and Fewer Model Parameters for Image-to-Image Translation Tasks
- Title(参考訳): FQGA-Single:画像から画像への翻訳作業における低トレーニングエポックと低モデルパラメータを目指して
- Authors: Cho Yang,
- Abstract要約: 本稿では,SynthRAD Grand Challengeデータセット上で,SEM法を用いてCycleGANを訓練した。
モデル性能は,PSNR,SSIM,MAE,MSEなどの定量的性能指標を用いて質的,定量的に評価した。
本稿では,CycleGANと比較して1/4のパラメータ数を持つFQGAという軽量モデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: CycleGAN was trained on SynthRAD Grand Challenge Dataset using the single-epoch modification (SEM) method proposed in this paper which is referred to as (CycleGAN-single) compared to the usual method of training CycleGAN on around 200 epochs (CycleGAN-multi). Model performance were evaluated qualitatively and quantitatively with quantitative performance metrics like PSNR, SSIM, MAE and MSE. The consideration of both quantitative and qualitative performance when evaluating a model is unique to certain image-to-image translation tasks like medical imaging of patient data as detailed in this paper. Also, this paper shows that good quantitative performance does not always imply good qualitative performance and the converse is also not always True (i.e. good qualitative performance does not always imply good quantitative performance). This paper also proposes a lightweight model called FQGA (Fast Paired Image-to-Image Translation Quarter-Generator Adversary) which has 1/4 the number of parameters compared to CycleGAN (when comparing their Generator Models). FQGA outperforms CycleGAN qualitatively and quantitatively even only after training on 20 epochs. Finally, using SEM method on FQGA allowed it to again outperform CycleGAN both quantitatively and qualitatively. These performance gains even with fewer model parameters and fewer epochs (which will result in time and computational savings) may also be applicable to other image-to-image translation tasks in Machine Learning apart from the Medical image-translation task discussed in this paper between Cone Beam Computed Tomography (CBCT) and Computed Tomography (CT) images.
- Abstract(参考訳): 今回提案したSynthRAD Grand Challenge Datasetでは,CycleGAN-single (CycleGAN-single) と呼ばれるシングルエポック修正(SEM)法を用いて,約200エポック(CycleGAN-multi)でのCycleGAN訓練法と比較した。
モデル性能は,PSNR,SSIM,MAE,MSEなどの定量的性能指標を用いて質的,定量的に評価した。
本論文では,患者データの医療画像化など,特定の画像から画像への変換作業において,モデル評価における定量的,質的なパフォーマンスの両面を考察する。
また,良質な量的性能は必ずしも良質な量的性能を示唆するものではなく,逆は常に真であるとは限らない(つまり,良質な量的性能は必ずしも良質な量的性能を示唆するものではない)。
本稿では,FQGA(Fast Paired Image-to- Image Translation Quarter-Generator Adversary)と呼ばれる軽量モデルを提案する。
FQGAは、20エポックのトレーニング後にのみ、CycleGANを質的に、定量的に上回る。
最後に、FQGA上でSEM法を用いることで、CycleGANを定量的にも質的にも再び上回ることができる。
これらの性能向上は,より少ないモデルパラメータと少ないエポック(時間と計算の節約につながる)でも,Cone Beam Computed Tomography (CBCT) とComputed Tomography (CT) で議論された医療画像翻訳タスクとは別に,機械学習の他の画像・画像翻訳タスクに適用できる可能性がある。
関連論文リスト
- Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image
Synthesis [7.234618871984921]
新たな研究分野は、限られたトレーニングデータで深層生成モデルを学ぶことを目的としている。
トレーニングに使用する事前分布を変更する新しいアプローチであるRS-IMLEを提案する。
これにより、既存のGANやIMLEベースの手法に比べて画質が大幅に向上する。
論文 参考訳(メタデータ) (2024-09-26T00:19:42Z) - Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare [99.57567498494448]
我々はLMMに基づくノン参照IQAモデルであるCompare2Scoreを紹介する。
トレーニング中、同じIQAデータセットの画像を比較することで、スケールアップ比較命令を生成する。
9つのIQAデータセットの実験により、Compare2Scoreは、トレーニング中にテキスト定義の比較レベルを効果的にブリッジすることを確認した。
論文 参考訳(メタデータ) (2024-05-29T17:26:09Z) - IG-FIQA: Improving Face Image Quality Assessment through Intra-class
Variance Guidance robust to Inaccurate Pseudo-Labels [13.567049202308981]
IG-FIQAは、FIQAトレーニングをガイドする新しいアプローチであり、これらの授業の有害な影響を軽減するために重みパラメータを導入する。
提案手法であるIG-FIQAは,様々なベンチマーク・データセットを用いて,新しいSOTA(State-of-the-art)性能を実現した。
論文 参考訳(メタデータ) (2024-03-13T05:15:43Z) - Paired Image-to-Image Translation Quality Assessment Using Multi-Method
Fusion [0.0]
本稿では,画像品質の信号のペア化と変換を併用して,後者の類似性と仮説的基底真理を推定する手法を提案する。
我々は,深部画像構造とテクスチャ類似性(DISTS)を予測するために,勾配型回帰器のアンサンブルを用いたマルチメソッドフュージョン(MMF)モデルを訓練した。
分析の結果,測定時間と予測精度の間にトレードオフが生じ,特徴制約を課すことが判明した。
論文 参考訳(メタデータ) (2022-05-09T11:05:15Z) - Towards Bidirectional Arbitrary Image Rescaling: Joint Optimization and
Cycle Idempotence [76.93002743194974]
本稿では、任意の再スケーリング(アップスケーリングとダウンスケーリングの両方)を統一プロセスとして扱う方法を提案する。
提案モデルでは、アップスケーリングとダウンスケーリングを同時に学習し、双方向の任意のイメージ再スケーリングを実現する。
繰り返しにダウンスケーリング・アップスケーリング・サイクルが適用された場合, 復元精度が著しく低下することなく, サイクルイデオポテンス試験において堅牢であることが確認された。
論文 参考訳(メタデータ) (2022-03-02T07:42:15Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Task2Sim : Towards Effective Pre-training and Transfer from Synthetic
Data [74.66568380558172]
本稿では,グラフィックスシミュレータから下流タスクへの合成データに基づく事前学習モデルの転送可能性について検討する。
本稿では、最適なシミュレーションパラメータに対する下流タスク表現を統一したモデルマッピングであるTask2Simを紹介する。
このマッピングはトレーニングによって学習し、"見える"タスクのセットで最適なパラメータのセットを見つける。
トレーニングが完了すると、ワンショットで新しい"見えない"タスクの最適なシミュレーションパラメータを予測するために使用することができる。
論文 参考訳(メタデータ) (2021-11-30T19:25:27Z) - Transferability Estimation using Bhattacharyya Class Separability [37.52588126267552]
トランスファーラーニング(Transfer Learning)は、コンピュータビジョンにおいて事前訓練されたモデルを活用する一般的な方法である。
特定の目標タスクに適した事前学習されたソースモデルを定量化することは困難である。
本稿では,ソースモデルとターゲットデータセット間の転送可能性の定量化手法を提案する。
論文 参考訳(メタデータ) (2021-11-24T20:22:28Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Few-Shot Adaptation of Generative Adversarial Networks [54.014885321880755]
本稿では,100枚未満の設定でGANを適応するための簡易かつ効果的なFew-Shot GANを提案する。
FSGANは、対応する特異ベクトルを凍結しながら、事前訓練された重みの特異値に適応することを学ぶ。
提案手法は,既存のGAN適応法と比較して,視覚的品質が著しく向上していることを示す。
論文 参考訳(メタデータ) (2020-10-22T17:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。