論文の概要: Learning Fair Invariant Representations under Covariate and Correlation Shifts Simultaneously
- arxiv url: http://arxiv.org/abs/2408.09312v1
- Date: Sun, 18 Aug 2024 00:01:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 21:19:42.100325
- Title: Learning Fair Invariant Representations under Covariate and Correlation Shifts Simultaneously
- Title(参考訳): 共変量と相関シフトの同時による公平な不変表現の学習
- Authors: Dong Li, Chen Zhao, Minglai Shao, Wenjun Wang,
- Abstract要約: フェアネスを意識したドメイン不変予測器の学習に焦点をあてた,新しい手法を提案する。
提案手法は, モデル精度だけでなく, グループ的, 個人的公正性についても, 最先端の手法を超越した手法である。
- 参考スコア(独自算出の注目度): 10.450977234741524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving the generalization of an invariant classifier from training domains to shifted test domains while simultaneously considering model fairness is a substantial and complex challenge in machine learning. Existing methods address the problem of fairness-aware domain generalization, focusing on either covariate shift or correlation shift, but rarely consider both at the same time. In this paper, we introduce a novel approach that focuses on learning a fairness-aware domain-invariant predictor within a framework addressing both covariate and correlation shifts simultaneously, ensuring its generalization to unknown test domains inaccessible during training. In our approach, data are first disentangled into content and style factors in latent spaces. Furthermore, fairness-aware domain-invariant content representations can be learned by mitigating sensitive information and retaining as much other information as possible. Extensive empirical studies on benchmark datasets demonstrate that our approach surpasses state-of-the-art methods with respect to model accuracy as well as both group and individual fairness.
- Abstract(参考訳): モデルフェアネスを同時に考慮しながら、トレーニングドメインからシフトテストドメインへの不変な分類器の一般化を実現することは、機械学習における実質的で複雑な課題である。
既存手法は、共変量シフトまたは相関シフトに焦点をあてて、公平性に配慮した領域一般化の問題に対処するが、両方を同時に考えることは滅多にない。
本稿では,コバリアイトと相関シフトの両方に同時に対処するフレームワーク内で,公平性を意識したドメイン不変予測器の学習に焦点をあて,学習中に到達できない未知のテスト領域への一般化を保証する新しいアプローチを提案する。
提案手法では,データを遅延空間内のコンテンツやスタイル要素に分割する。
さらに、センシティブな情報を緩和し、できるだけ多くの情報を保持することで、フェアネスを意識したドメイン不変コンテンツ表現を学習することができる。
ベンチマークデータセットに関する大規模な実証研究により、我々のアプローチは、モデル精度だけでなく、グループと個人の公正性の両方に関して最先端の手法を超越していることが示された。
関連論文リスト
- FEED: Fairness-Enhanced Meta-Learning for Domain Generalization [13.757379847454372]
モデルフェアネスを認識しながら配布外データに一般化することは、メタラーニングにおいて重要かつ困難な問題である。
本稿では,ドメインの一般化能力を大幅に向上させるフェアネスを考慮したメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-11-02T17:34:33Z) - Regularized Conditional Alignment for Multi-Domain Text Classification [6.629561563470492]
本稿では,正規化条件アライメント(RCA)と呼ばれる手法を提案する。
我々は、ラベルのないデータに関する予測の不確実性を抑制するために、エントロピーの最小化と仮想対位トレーニングを採用している。
2つのベンチマークデータセットによる実験結果から、我々のRCAアプローチは最先端のMDTC技術より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-18T05:52:05Z) - Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously [28.24666589680547]
公平かつ不変な分類器の学習を目的とした,単純かつ効果的な手法を提案する。
モデルを用いて様々な合成データドメインを拡張することにより、ソースドメインの公平かつ不変な分類器を学習する。
この分類器は未知の対象領域に一般化することができ、モデル予測と公平性の懸念の両方を維持できる。
論文 参考訳(メタデータ) (2023-11-23T05:52:00Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
本稿では,新しいFCCL+,フェデレーション相関と非ターゲット蒸留との類似性学習を提案する。
不均一な問題に対しては、無関係な公開データを通信に活用する。
局所的な更新段階における破滅的な忘れ物として、FCCL+はFederated Non Target Distillationを導入している。
論文 参考訳(メタデータ) (2023-09-28T09:32:27Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z) - A Bit More Bayesian: Domain-Invariant Learning with Uncertainty [111.22588110362705]
ドメインの一般化は、ドメインシフトと、ターゲットドメインデータのアクセス不能に起因する不確実性のために困難である。
本稿では,変分ベイズ推定に基づく確率的枠組みを用いて,両課題に対処する。
2層ベイズ型ニューラルネットワークで共同で確立されたドメイン不変表現と分類器を導出する。
論文 参考訳(メタデータ) (2021-05-09T21:33:27Z) - Cross-Domain Similarity Learning for Face Recognition in Unseen Domains [90.35908506994365]
本研究では,cdt(cross-domain triplet, クロスドメイントリプレット)の損失を推測する新しいクロスドメインメトリック学習損失法を提案する。
CDT損失は、一つのドメインからコンパクトな特徴クラスタを強制することによって意味論的に意味のある特徴の学習を促進する。
本手法では,トレーニング中,注意深いハードペアサンプルマイニングおよびフィルタリング戦略は必要としない。
論文 参考訳(メタデータ) (2021-03-12T19:48:01Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
本研究では,不均衡なドメイン間学習における公平性問題に対処するTowards Fair Knowledge Transferフレームワークを提案する。
具体的には、新規なクロスドメインミックスアップ生成を利用して、ターゲット情報でマイノリティソースセットを増強し、公正性を高める。
本モデルでは,2つのベンチマークで全体の精度を20%以上向上させる。
論文 参考訳(メタデータ) (2020-10-23T06:29:09Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。