論文の概要: Angle of Arrival Estimation with Transformer: A Sparse and Gridless Method with Zero-Shot Capability
- arxiv url: http://arxiv.org/abs/2408.09362v1
- Date: Sun, 18 Aug 2024 05:24:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 21:09:49.039265
- Title: Angle of Arrival Estimation with Transformer: A Sparse and Gridless Method with Zero-Shot Capability
- Title(参考訳): 変圧器による位置推定の角度:ゼロショット機能を有するスパース・グリッドレス法
- Authors: Zhaoxuan Zhu, Chulong Chen, Bo Yang,
- Abstract要約: 本研究では,高速グリッドレスAOA推定のためのAAETR (Angle of Arrival Estimation with TRansformer)を提案する。
様々な信号対雑音比(SNR)とマルチターゲットシナリオの総合的な評価は、AAETRの超分解能AOAアルゴリズムよりも優れた性能を示している。
- 参考スコア(独自算出の注目度): 3.110068567404913
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automotive Multiple-Input Multiple-Output (MIMO) radars have gained significant traction in Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AV) due to their cost-effectiveness, resilience to challenging operating conditions, and extended detection range. To fully leverage the advantages of MIMO radars, it is crucial to develop an Angle of Arrival (AOA) algorithm that delivers high performance with reasonable computational workload. This work introduces AAETR (Angle of Arrival Estimation with TRansformer) for high performance gridless AOA estimation. Comprehensive evaluations across various signal-to-noise ratios (SNRs) and multi-target scenarios demonstrate AAETR's superior performance compared to super resolution AOA algorithms such as Iterative Adaptive Approach (IAA). The proposed architecture features efficient, scalable, sparse and gridless angle-finding capability, overcoming the issues of high computational cost and straddling loss in SNR associated with grid-based IAA. AAETR requires fewer tunable hyper-parameters and is end-to-end trainable in a deep learning radar perception pipeline. When trained on large-scale simulated datasets then evaluated on real dataset, AAETR exhibits remarkable zero-shot sim-to-real transferability and emergent sidelobe suppression capability. This highlights the effectiveness of the proposed approach and its potential as a drop-in module in practical systems.
- Abstract(参考訳): 自動車用多入力多重出力(MIMO)レーダーは、コスト効率、運転条件への弾力性、検知範囲の延長などにより、先進運転支援システム(ADAS)と自律走行車(AV)で大きな注目を集めている。
MIMOレーダの利点をフル活用するためには、合理的な計算負荷で高い性能を実現するアングル・オブ・アーリバル(AOA)アルゴリズムを開発することが重要である。
本研究では,高速グリッドレスAOA推定のためのAAETR (Angle of Arrival Estimation with TRansformer)を提案する。
様々な信号対雑音比(SNR)とマルチターゲットシナリオの総合的な評価は、IAA(Iterative Adaptive Approach)のような超高分解能AOAアルゴリズムと比較してAAETRの優れた性能を示している。
提案アーキテクチャは、グリッドベースIAAに関連する高計算コストとSNRのトラドリング損失の問題を克服し、効率よく、スケーラブルで、スパースで、グリッドレスのアングルフィニング機能を備えている。
AAETRは調整可能なハイパーパラメータを少なくし、ディープラーニングレーダー認識パイプラインでエンドツーエンドのトレーニングが可能である。
大規模なシミュレートされたデータセットをトレーニングして実際のデータセットで評価すると、AAETRは目覚ましいゼロショットのシミュレート可能性と創発的なサイドローブ抑制能力を示す。
これは、提案手法の有効性と実用システムにおけるドロップインモジュールとしての可能性を強調している。
関連論文リスト
- Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging [18.482494583284627]
SAR(Synthetic Aperture Radar)は、レーダーアンテナの特定の領域への移動を利用して高分解能撮像を実現する。
提案するARIS搭載SARシステムの撮像結果を得るために,レンジドップラー (RD) イメージングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-18T06:33:11Z) - Enhancing Reliability in Federated mmWave Networks: A Practical and
Scalable Solution using Radar-Aided Dynamic Blockage Recognition [14.18507067281377]
本稿では,ミリ波(mmWave)およびテラヘルツ(THz)ネットワークサービスの動的屋外環境における信頼性向上のための新しい手法を提案する。
これらの設定では、人や車などの障害物を動かすことで、視線接続(LoS)が簡単に中断される。
提案手法はRadar-Aided Blockage Dynamic Recognition (RaDaR)と呼ばれ、レーダー計測とフェデレートラーニング(FL)を活用して、二重出力ニューラルネットワーク(NN)モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-22T10:10:25Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
本稿では,緊急対応・監視用uavの航空機画像の効率的な分類について述べる。
緊急対応アプリケーションのための専用空中画像データベースを導入し、既存のアプローチの比較分析を行う。
マルチレゾリューション機能を処理するために,アトラス畳み込みに基づく軽量畳み込みニューラルネットワークアーキテクチャが提案されている。
論文 参考訳(メタデータ) (2021-04-28T20:24:10Z) - Automotive Radar Interference Mitigation with Unfolded Robust PCA based
on Residual Overcomplete Auto-Encoder Blocks [88.46770122522697]
自律走行では、レーダーシステムは道路上の他の車両のような標的を検出する上で重要な役割を果たす。
自動車用レーダー干渉緩和のための深層学習手法は、目標の振幅を確実に推定できるが、それぞれの目標の位相を回復できない。
干渉の有無で振幅と位相の両方を推定できる効率的かつ効率的な手法を提案する。
論文 参考訳(メタデータ) (2020-10-14T09:41:06Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。