Angle of Arrival Estimation with Transformer: A Sparse and Gridless Method with Zero-Shot Capability
- URL: http://arxiv.org/abs/2408.09362v1
- Date: Sun, 18 Aug 2024 05:24:18 GMT
- Title: Angle of Arrival Estimation with Transformer: A Sparse and Gridless Method with Zero-Shot Capability
- Authors: Zhaoxuan Zhu, Chulong Chen, Bo Yang,
- Abstract summary: This work introduces AAETR (Angle of Arrival Estimation with TRansformer) for high performance gridless AOA estimation.
Comprehensive evaluations across various signal-to-noise ratios (SNRs) and multi-target scenarios demonstrate AAETR's superior performance compared to super resolution AOA algorithms.
- Score: 3.110068567404913
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automotive Multiple-Input Multiple-Output (MIMO) radars have gained significant traction in Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AV) due to their cost-effectiveness, resilience to challenging operating conditions, and extended detection range. To fully leverage the advantages of MIMO radars, it is crucial to develop an Angle of Arrival (AOA) algorithm that delivers high performance with reasonable computational workload. This work introduces AAETR (Angle of Arrival Estimation with TRansformer) for high performance gridless AOA estimation. Comprehensive evaluations across various signal-to-noise ratios (SNRs) and multi-target scenarios demonstrate AAETR's superior performance compared to super resolution AOA algorithms such as Iterative Adaptive Approach (IAA). The proposed architecture features efficient, scalable, sparse and gridless angle-finding capability, overcoming the issues of high computational cost and straddling loss in SNR associated with grid-based IAA. AAETR requires fewer tunable hyper-parameters and is end-to-end trainable in a deep learning radar perception pipeline. When trained on large-scale simulated datasets then evaluated on real dataset, AAETR exhibits remarkable zero-shot sim-to-real transferability and emergent sidelobe suppression capability. This highlights the effectiveness of the proposed approach and its potential as a drop-in module in practical systems.
Related papers
- Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging [18.482494583284627]
Synthetic Aperture Radar (SAR) utilizes the movement of the radar antenna over a specific area interest to achieve higher resolution imaging.
We present a range-Doppler (RD) imaging algorithm to obtain imaging results for the proposed ARIS-empowered SAR system.
arXiv Detail & Related papers (2024-09-18T06:33:11Z) - Enhancing Reliability in Federated mmWave Networks: A Practical and
Scalable Solution using Radar-Aided Dynamic Blockage Recognition [14.18507067281377]
This article introduces a new method to improve the dependability of millimeter-wave (mmWave) and terahertz (THz) network services in dynamic outdoor environments.
In these settings, line-of-sight (LoS) connections are easily interrupted by moving obstacles like humans and vehicles.
The proposed approach, coined as Radar-aided blockage Dynamic Recognition (RaDaR), leverages radar measurements and federated learning (FL) to train a dual-output neural network (NN) model.
arXiv Detail & Related papers (2023-06-22T10:10:25Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z) - Automotive Radar Interference Mitigation with Unfolded Robust PCA based
on Residual Overcomplete Auto-Encoder Blocks [88.46770122522697]
In autonomous driving, radar systems play an important role in detecting targets such as other vehicles on the road.
Deep learning methods for automotive radar interference mitigation can succesfully estimate the amplitude of targets, but fail to recover the phase of the respective targets.
We propose an efficient and effective technique that is able to estimate both amplitude and phase in the presence of interference.
arXiv Detail & Related papers (2020-10-14T09:41:06Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.