Attention-based UAV Trajectory Optimization for Wireless Power Transfer-assisted IoT Systems
- URL: http://arxiv.org/abs/2502.17517v1
- Date: Sun, 23 Feb 2025 02:57:06 GMT
- Title: Attention-based UAV Trajectory Optimization for Wireless Power Transfer-assisted IoT Systems
- Authors: Li Dong, Feibo Jiang, Yubo Peng,
- Abstract summary: We present an Attention-based UAV Trajectory Optimization framework based on the graph transformer.<n>In ATOM, a graph encoder is used to calculate the self-attention characteristics of all IoTDs.<n>TENMA then trains the ATOM using an improved Actor-Critic method, in which the real reward of the system is applied as the baseline to reduce variances in the critic network.
- Score: 19.680892841701674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) in Wireless Power Transfer (WPT)-assisted Internet of Things (IoT) systems face the following challenges: limited resources and suboptimal trajectory planning. Reinforcement learning-based trajectory planning schemes face issues of low search efficiency and learning instability when optimizing large-scale systems. To address these issues, we present an Attention-based UAV Trajectory Optimization (AUTO) framework based on the graph transformer, which consists of an Attention Trajectory Optimization Model (ATOM) and a Trajectory lEarNing Method based on Actor-critic (TENMA). In ATOM, a graph encoder is used to calculate the self-attention characteristics of all IoTDs, and a trajectory decoder is developed to optimize the number and trajectories of UAVs. TENMA then trains the ATOM using an improved Actor-Critic method, in which the real reward of the system is applied as the baseline to reduce variances in the critic network. This method is suitable for high-quality and large-scale multi-UAV trajectory planning. Finally, we develop numerous experiments, including a hardware experiment in the field case, to verify the feasibility and efficiency of the AUTO framework.
Related papers
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - When UAV Meets Federated Learning: Latency Minimization via Joint Trajectory Design and Resource Allocation [47.20867891501245]
Federated learning (FL) has emerged as a pivotal solution for training machine learning models over wireless networks.<n>We introduce an innovative approach by deploying an unmanned aerial vehicle (UAV) as a mobile FL server to enhance the training process of FL.<n>To improve the overall training efficiency, we formulate a latency problem by jointly optimizing the bandwidth allocation, computing frequencies, transmit power for both the UAV and IoT devices, and the UAV's trajectory.
arXiv Detail & Related papers (2024-12-10T11:39:27Z) - Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
This paper studies a new latency optimization problem in unmanned aerial vehicles (UAVs)-enabled federated learning (FL) with integrated sensing and communication.
We develop a simple yet efficient iterative algorithm to find a high-quality approximate solution, saving system latency up to 68.54% compared to benchmark schemes.
arXiv Detail & Related papers (2024-11-01T14:25:24Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model [4.273341750394231]
We formulate the problem of jointly designing the UAV's trajectory and selecting cluster heads in the Internet-of-Things network.
We propose a novel deep reinforcement learning (DRL) with a sequential model strategy that can effectively learn the policy represented by a sequence-to-sequence neural network.
Through extensive simulations, the obtained results show that the proposed DRL method can find the UAV's trajectory that requires much less energy consumption.
arXiv Detail & Related papers (2021-12-01T07:59:53Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Reinforcement Learning to Optimize the Logistics Distribution Routes of
Unmanned Aerial Vehicle [0.0]
This paper proposes an improved method to achieve path planning for UAVs in complex surroundings: multiple no-fly zones.
The results show the feasibility and efficiency of the model applying in this kind of complicated situation.
arXiv Detail & Related papers (2020-04-21T09:42:03Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.