Flemme: A Flexible and Modular Learning Platform for Medical Images
- URL: http://arxiv.org/abs/2408.09369v1
- Date: Sun, 18 Aug 2024 05:47:33 GMT
- Title: Flemme: A Flexible and Modular Learning Platform for Medical Images
- Authors: Guoqing Zhang, Jingyun Yang, Yang Li,
- Abstract summary: Flemme is a FLExible and Modular learning platform for MEdical images.
We construct encoders using building blocks based on convolution, transformer, and state-space model (SSM) to process both 2D and 3D image patches.
- Score: 5.086862917025204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the rapid development of computer vision and the emergence of powerful network backbones and architectures, the application of deep learning in medical imaging has become increasingly significant. Unlike natural images, medical images lack huge volumes of data but feature more modalities, making it difficult to train a general model that has satisfactory performance across various datasets. In practice, practitioners often suffer from manually creating and testing models combining independent backbones and architectures, which is a laborious and time-consuming process. We propose Flemme, a FLExible and Modular learning platform for MEdical images. Our platform separates encoders from the model architectures so that different models can be constructed via various combinations of supported encoders and architectures. We construct encoders using building blocks based on convolution, transformer, and state-space model (SSM) to process both 2D and 3D image patches. A base architecture is implemented following an encoder-decoder style, with several derived architectures for image segmentation, reconstruction, and generation tasks. In addition, we propose a general hierarchical architecture incorporating a pyramid loss to optimize and fuse vertical features. Experiments demonstrate that this simple design leads to an average improvement of 5.60% in Dice score and 7.81% in mean interaction of units (mIoU) for segmentation models, as well as an enhancement of 5.57% in peak signal-to-noise ratio (PSNR) and 8.22% in structural similarity (SSIM) for reconstruction models. We further utilize Flemme as an analytical tool to assess the effectiveness and efficiency of various encoders across different tasks. Code is available at https://github.com/wlsdzyzl/flemme.
Related papers
- Computer Vision Model Compression Techniques for Embedded Systems: A Survey [75.38606213726906]
This paper covers the main model compression techniques applied for computer vision tasks.
We present the characteristics of compression subareas, compare different approaches, and discuss how to choose the best technique.
We also share codes to assist researchers and new practitioners in overcoming initial implementation challenges.
arXiv Detail & Related papers (2024-08-15T16:41:55Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - UNetFormer: A Unified Vision Transformer Model and Pre-Training
Framework for 3D Medical Image Segmentation [14.873473285148853]
We introduce a unified framework consisting of two architectures, dubbed UNetFormer, with a 3D Swin Transformer-based encoder and Conal Neural Network (CNN) and transformer-based decoders.
In the proposed model, the encoder is linked to the decoder via skip connections at five different resolutions with deep supervision.
We present a methodology for self-supervised pre-training of the encoder backbone via learning to predict randomly masked tokens.
arXiv Detail & Related papers (2022-04-01T17:38:39Z) - A unified software/hardware scalable architecture for brain-inspired
computing based on self-organizing neural models [6.072718806755325]
We develop an original brain-inspired neural model associating Self-Organizing Maps (SOM) and Hebbian learning in the Reentrant SOM (ReSOM) model.
This work also demonstrates the distributed and scalable nature of the model through both simulation results and hardware execution on a dedicated FPGA-based platform.
arXiv Detail & Related papers (2022-01-06T22:02:19Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Multi-Stage Progressive Image Restoration [167.6852235432918]
We propose a novel synergistic design that can optimally balance these competing goals.
Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs.
The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets.
arXiv Detail & Related papers (2021-02-04T18:57:07Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - Parkinson's Disease Detection with Ensemble Architectures based on
ILSVRC Models [1.8884278918443564]
We explore various neural network architectures using Magnetic Resonance (MR) T1 images of the brain to identify Parkinson's Disease (PD)
All of our proposed architectures outperform existing approaches to detect PD from MR images, achieving upto 95% detection accuracy.
Our finding suggests a promising direction when no or insufficient training data is available.
arXiv Detail & Related papers (2020-07-23T05:40:47Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.