Game Development as Human-LLM Interaction
- URL: http://arxiv.org/abs/2408.09386v1
- Date: Sun, 18 Aug 2024 07:06:57 GMT
- Title: Game Development as Human-LLM Interaction
- Authors: Jiale Hong, Hongqiu Wu, Hai Zhao,
- Abstract summary: This paper introduces the Interaction-driven Game Engine (IGE) powered by Human-LLM interaction.
We construct an IGE for poker games as a case study and evaluate it from two perspectives: interaction quality and code correctness.
- Score: 55.03293214439741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Game development is a highly specialized task that relies on a complex game engine powered by complex programming languages, preventing many gaming enthusiasts from handling it. This paper introduces the Interaction-driven Game Engine (IGE) powered by LLM, which allows everyone to develop a custom game using natural language through Human-LLM interaction. To enable an LLM to function as an IGE, we instruct it to perform the following processes in each turn: (1) $P_{script}$ : configure the game script segment based on the user's input; (2) $P_{code}$ : generate the corresponding code snippet based on the game script segment; (3) $P_{utter}$ : interact with the user, including guidance and feedback. We propose a data synthesis pipeline based on the LLM to generate game script-code pairs and interactions from a few manually crafted seed data. We propose a three-stage progressive training strategy to transfer the dialogue-based LLM to our IGE smoothly. We construct an IGE for poker games as a case study and comprehensively evaluate it from two perspectives: interaction quality and code correctness. The code and data are available at \url{https://github.com/alterego238/IGE}.
Related papers
- Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game descriptions and generate game-play processes.
We train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs.
arXiv Detail & Related papers (2024-10-17T11:16:27Z) - Evaluating Large Language Models with Grid-Based Game Competitions: An Extensible LLM Benchmark and Leaderboard [0.0]
We introduce a novel benchmark for large language models (LLMs) through grid-based games such as Tic-Tac-Toe, Connect Four, and Gomoku.
The open-source game simulation code available on GitHub allows LLMs to compete and generates detailed data files.
We present the results of games among leading LLMs, including Claude 3.5 Sonnet and Claude 3 Sonnet by Anthropic, Gemini 1.5 Pro and Gemini Flash by Google, GPT-4 Turbo and GPT-4o by OpenAI, and Llama3-70B by Meta.
arXiv Detail & Related papers (2024-07-10T16:14:34Z) - PANGeA: Procedural Artificial Narrative using Generative AI for Turn-Based Video Games [0.0]
This research introduces Procedural Artificial Narrative using Generative AI (PANGeA)
PANGeA is a structured approach for leveraging large language models (LLMs) to generate narrative content for turn-based role-playing video games (RPGs)
The NPCs generated by PANGeA are personality-biased and express traits from the Big 5 Personality Model in their generated responses.
arXiv Detail & Related papers (2024-04-30T17:11:54Z) - A Survey on Large Language Model-Based Game Agents [9.892954815419452]
The development of game agents holds a critical role in advancing towards Artificial General Intelligence (AGI)
This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint.
arXiv Detail & Related papers (2024-04-02T15:34:18Z) - Bootstrapping LLM-based Task-Oriented Dialogue Agents via Self-Talk [11.706292228586332]
Large language models (LLMs) are powerful dialogue agents, but specializing them towards fulfilling a specific function can be challenging.
We propose a more effective method for data collection through LLMs engaging in a conversation in various roles.
This approach generates a training data via "self-talk" of LLMs that can be refined and utilized for supervised fine-tuning.
arXiv Detail & Related papers (2024-01-10T09:49:10Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks.
However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome.
In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue.
arXiv Detail & Related papers (2023-11-09T18:45:16Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPT is a multi-modal LLM with visual grounding that can perform cross-modal interaction between vision, audio and language.
Our contributions are two-fold: 1) An off-the-shelf visual grounding module based on SAM that extracts entities in a sentence and find corresponding masks in the image.
Our experiments show that BuboGPT achieves impressive multi-modality understanding and visual grounding abilities during the interaction with human.
arXiv Detail & Related papers (2023-07-17T15:51:47Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z) - Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as
Conversational Agents [20.202525145391093]
Recent work has proposed a methodology for the systematic evaluation of "Situated Language Understanding Agents"
This paper explores: Can Large Language Models be evaluated meaningfully by exposing them to constrained game-like settings?
As a proof of concept, this paper investigates five interaction settings, showing that current chat-optimised LLMs are, to an extent, capable to follow game-play instructions.
arXiv Detail & Related papers (2023-05-22T19:56:10Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.