論文の概要: OPPH: A Vision-Based Operator for Measuring Body Movements for Personal Healthcare
- arxiv url: http://arxiv.org/abs/2408.09409v1
- Date: Sun, 18 Aug 2024 08:52:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:50:15.202458
- Title: OPPH: A Vision-Based Operator for Measuring Body Movements for Personal Healthcare
- Title(参考訳): OPPH : 医療用身体運動計測オペレータ
- Authors: Chen Long-fei, Subramanian Ramamoorthy, Robert B Fisher,
- Abstract要約: 視覚に基づく運動推定法は、医療目的のために人体の動きを正確にかつ控えめに推定する。
これらの方法は、医療目的のために特別に設計されたものではなく、現実世界のアプリケーションにおいて課題に直面している。
本稿では,現在の視覚に基づく動き推定手法を強化するためのOPPH演算子を提案する。
- 参考スコア(独自算出の注目度): 19.468689776476104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-based motion estimation methods show promise in accurately and unobtrusively estimating human body motion for healthcare purposes. However, these methods are not specifically designed for healthcare purposes and face challenges in real-world applications. Human pose estimation methods often lack the accuracy needed for detecting fine-grained, subtle body movements, while optical flow-based methods struggle with poor lighting conditions and unseen real-world data. These issues result in human body motion estimation errors, particularly during critical medical situations where the body is motionless, such as during unconsciousness. To address these challenges and improve the accuracy of human body motion estimation for healthcare purposes, we propose the OPPH operator designed to enhance current vision-based motion estimation methods. This operator, which considers human body movement and noise properties, functions as a multi-stage filter. Results tested on two real-world and one synthetic human motion dataset demonstrate that the operator effectively removes real-world noise, significantly enhances the detection of motionless states, maintains the accuracy of estimating active body movements, and maintains long-term body movement trends. This method could be beneficial for analyzing both critical medical events and chronic medical conditions.
- Abstract(参考訳): 視覚に基づく運動推定法は、医療目的のために人体の動きを正確にかつ控えめに推定する。
しかし、これらの手法は医療目的のために特別に設計されておらず、現実世界のアプリケーションでは課題に直面している。
人間のポーズ推定法は、細粒度で微妙な身体の動きを検出するのに必要な精度を欠くことが多いが、光学フローベース法は、照明条件が悪く、実世界のデータが見えない。
これらの問題は、特に無意識など身体が動かない重要な医療状況において、人間の身体の動き推定誤差をもたらす。
これらの課題に対処し、医療目的の人体動作推定の精度を向上させるために、現在の視覚に基づく動作推定手法を強化するために設計されたOPPH演算子を提案する。
人体運動とノイズ特性を考慮した多段フィルタとして機能する。
2つの実世界と1つの人工人体運動データセットでテストした結果、オペレーターは実世界のノイズを効果的に除去し、動きのない状態の検出を著しく強化し、アクティブな身体の動きを推定する精度を維持し、長期的な身体の動きの傾向を維持することを示した。
この方法は、重篤な医療イベントと慢性的な医療状況の両方を分析するのに有用である。
関連論文リスト
- COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation [98.05046790227561]
COINは、人間の動きとカメラの動きを細粒度に制御できる、コントロール・インパインティング・モーション拡散である。
COINは、グローバルな人間の動き推定とカメラの動き推定という観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-08-29T10:36:29Z) - Aligning Human Motion Generation with Human Perceptions [51.831338643012444]
本研究では,大規模人間の知覚評価データセットであるMotionPerceptと,人間の動作批判モデルであるMotionCriticを導入することにより,ギャップを埋めるデータ駆動型アプローチを提案する。
我々の批評家モデルは、運動品質を評価するためのより正確な指標を提供しており、容易に運動生成パイプラインに統合することができる。
論文 参考訳(メタデータ) (2024-07-02T14:01:59Z) - SISMIK for brain MRI: Deep-learning-based motion estimation and model-based motion correction in k-space [0.0]
本研究では,脳の2次元スピンエコースキャンにおける動き推定と補正の振り返り手法を提案する。
この手法は、深いニューラルネットワークのパワーを利用してk空間の運動パラメータを推定する。
モデルに基づくアプローチを用いて、劣化した画像を復元し、「幻覚」を避ける。
論文 参考訳(メタデータ) (2023-12-20T17:38:56Z) - Deep state-space modeling for explainable representation, analysis, and
generation of professional human poses [0.0]
本稿では,人間の動作を説明可能な表現にするための3つの新しい手法を紹介する。
トレーニングされたモデルは、専門家のフルボディのデキスタリティ分析に使用される。
論文 参考訳(メタデータ) (2023-04-13T08:13:10Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - Imposing Temporal Consistency on Deep Monocular Body Shape and Pose
Estimation [67.23327074124855]
本稿では,適合過程における時間的制約の統合に対するエレガントな解法を提案する。
我々は、顎ポーズ、表情、指ポーズを含む人物の形状と動きを表す一連の身体モデルのパラメーターを導出する。
本手法は,表情や手話を含む画像系列からリアルな3次元体モデルの導出を可能にする。
論文 参考訳(メタデータ) (2022-02-07T11:11:55Z) - Unsupervised Landmark Detection Based Spatiotemporal Motion Estimation
for 4D Dynamic Medical Images [16.759486905827433]
2段階からなるDense-Sparse-Dense (DSD) の新たな動き推定フレームワークを提案する。
第1段階では, 対象臓器解剖学的トポロジーを表すために, 粗いランドマークを抽出するために, 生の高密度画像を処理する。
第2段階では、異なる時間点の2つの画像の抽出されたスパースランドマークからスパース運動変位を導出する。
論文 参考訳(メタデータ) (2021-09-30T02:06:02Z) - From Movement Kinematics to Object Properties: Online Recognition of
Human Carefulness [112.28757246103099]
ロボットは、視覚だけで、人間のパートナーが物体を動かす際に注意を払っているかを、どのようにオンラインで推測できるかを示す。
我々は,低解像度カメラでも高い精度(最大81.3%)でこの推論を行うことができることを示した。
パートナーの行動を観察することによる動きの注意の迅速な認識により、ロボットはオブジェクトに対する行動に適応し、人間のパートナーと同じケアの度合いを示すことができる。
論文 参考訳(メタデータ) (2021-09-01T16:03:13Z) - A Spatio-temporal Attention-based Model for Infant Movement Assessment
from Videos [44.71923220732036]
本研究では,短いクリップから抽出した人間のポーズを用いた新たなフィジット動作評価法を開発した。
人間のポーズは関節と手足の運動プロファイルのみをキャプチャし、無関係な外観の人工物は含まない。
実験の結果,提案手法はROC-AUCスコア81.87%を達成し,既存の競合手法よりも高い性能を示し,高い解釈性を示した。
論文 参考訳(メタデータ) (2021-05-20T14:31:54Z) - Careful with That! Observation of Human Movements to Estimate Objects
Properties [106.925705883949]
我々は、物体の重さについての洞察を伝える人間の運動行動の特徴に焦点を当てる。
最後の目標は、ロボットがオブジェクトハンドリングに必要なケアの度合いを自律的に推測できるようにすることです。
論文 参考訳(メタデータ) (2021-03-02T08:14:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。