論文の概要: Challenges and Responses in the Practice of Large Language Models
- arxiv url: http://arxiv.org/abs/2408.09416v1
- Date: Sun, 18 Aug 2024 09:15:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:50:15.187611
- Title: Challenges and Responses in the Practice of Large Language Models
- Title(参考訳): 大規模言語モデルの実践における課題と対応
- Authors: Hongyin Zhu,
- Abstract要約: 本稿は、現在注目されているAI分野に焦点を当て、あらゆる人生の歩みから広範囲で深い疑問を注意深く要約する。
業界動向、学術研究、技術革新、ビジネス応用など、さまざまな分野をカバーしている。
コンピュータパワーインフラストラクチャ、ソフトウェアアーキテクチャ、データリソース、アプリケーションシナリオ、脳科学の5つの中核的な側面から、これらの質問を体系的かつ慎重に分類し、整理する。
- 参考スコア(独自算出の注目度): 0.9463895540925061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper carefully summarizes extensive and profound questions from all walks of life, focusing on the current high-profile AI field, covering multiple dimensions such as industry trends, academic research, technological innovation and business applications. This paper meticulously curates questions that are both thought-provoking and practically relevant, providing nuanced and insightful answers to each. To facilitate readers' understanding and reference, this paper specifically classifies and organizes these questions systematically and meticulously from the five core dimensions of computing power infrastructure, software architecture, data resources, application scenarios, and brain science. This work aims to provide readers with a comprehensive, in-depth and cutting-edge AI knowledge framework to help people from all walks of life grasp the pulse of AI development, stimulate innovative thinking, and promote industrial progress.
- Abstract(参考訳): 本稿は、産業動向、学術研究、技術革新、ビジネス応用など、さまざまな側面を網羅した、現在注目されているAI分野に焦点を当て、あらゆる人生の歩みから広範囲で深い疑問を注意深く要約する。
本論文は、思考を誘発し、実践的に関係のある質問を慎重にキュレートし、それぞれにニュアンスがあり、洞察に富んだ回答を提供する。
本稿では,コンピュータパワーインフラストラクチャ,ソフトウェアアーキテクチャ,データリソース,アプリケーションシナリオ,脳科学の5つの中核的な側面から,これらの質問を体系的かつ慎重に分類し,整理する。
この研究は、あらゆる人生の人々のAI開発のパルスを把握し、革新的思考を刺激し、産業の進歩を促進するために、包括的で深い、最先端のAI知識フレームワークを読者に提供することを目的としている。
関連論文リスト
- Applications and Advances of Artificial Intelligence in Music Generation:A Review [0.04551615447454769]
本稿では,AI音楽生成における最新の研究成果を体系的にレビューする。
主要な技術、モデル、データセット、評価方法、および様々な分野におけるそれらの実践的応用をカバーしている。
論文 参考訳(メタデータ) (2024-09-03T13:50:55Z) - Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives [10.16399860867284]
生成人工知能(AI)と大規模言語モデル(LLM)の出現は、自然言語処理(NLP)の新しい時代を象徴している。
本稿では,これらの最先端技術の現状を概観し,その顕著な進歩と広範囲な応用を実証する。
論文 参考訳(メタデータ) (2024-07-20T18:48:35Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
本稿では,新たなオープンワールド機械学習パラダイムを包括的に紹介することを目的としている。
研究者がそれぞれの分野でより強力なAIシステムを構築するのを支援し、人工知能の開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T06:25:26Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Dealing with Data for RE: Mitigating Challenges while using NLP and
Generative AI [2.9189409618561966]
本章では、ソフトウェア工学全般の進化する展望、特に要件工学(RE)について論じている。
自然言語処理(NLP)と生成AIをエンタープライズクリティカルなソフトウェアシステムに統合する際に生じる課題について論じる。
本は、読者に必要な知識とツールを提供するために、実践的な洞察、解決策、例を提供する。
論文 参考訳(メタデータ) (2024-02-26T19:19:47Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - A survey of Generative AI Applications [0.0]
350以上の生成AIアプリケーションに関する総合的な調査を示す。
調査はセクションに分けられ、広範囲の単調な生成AIアプリケーションをカバーする。
論文 参考訳(メタデータ) (2023-06-05T11:14:18Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - Machine Knowledge: Creation and Curation of Comprehensive Knowledge
Bases [28.856786775318486]
知識グラフとしても知られる大規模な知識基盤は、Webコンテンツやテキストソースから自動的に構築されている。
本稿では,知識基盤の創出と大規模化に関する基礎的概念と実践的手法について考察する。
論文 参考訳(メタデータ) (2020-09-24T09:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。