論文の概要: GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings
- arxiv url: http://arxiv.org/abs/2408.09451v1
- Date: Sun, 18 Aug 2024 12:19:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:40:30.719459
- Title: GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings
- Title(参考訳): GraphSPNs: 標準注文に適合するSum-Product Networks
- Authors: Milan Papež, Martin Rektoris, Václav Šmídl, Tomáš Pevný,
- Abstract要約: グラフ和積ネットワーク(Graph sum-product network、GraphSPN)は、(任意部分)グラフに対する正確かつ効率的な推論を提供する、抽出可能な深層生成モデルである。
我々は、GraphSPNが(条件付き)新規かつ化学的に有効な分子グラフを生成できることを実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep generative models have recently made a remarkable progress in capturing complex probability distributions over graphs. However, they are intractable and thus unable to answer even the most basic probabilistic inference queries without resorting to approximations. Therefore, we propose graph sum-product networks (GraphSPNs), a tractable deep generative model which provides exact and efficient inference over (arbitrary parts of) graphs. We investigate different principles to make SPNs permutation invariant. We demonstrate that GraphSPNs are able to (conditionally) generate novel and chemically valid molecular graphs, being competitive to, and sometimes even better than, existing intractable models. We find out that (Graph)SPNs benefit from ensuring the permutation invariance via canonical ordering.
- Abstract(参考訳): 深部生成モデルは最近、グラフ上の複素確率分布のキャプチャにおいて顕著な進歩を遂げた。
しかし、それらは難解であり、近似に頼らずに最も基本的な確率的推論クエリにも答えられない。
そこで本稿では,グラフの(任意部分)上での正確かつ効率的な推論を提供する,トラクタブルな深層生成モデルであるGraphSPNを提案する。
本研究では,SPNの置換を不変にするための異なる原理について検討する。
我々は、GraphSPNが(条件付きで)新規で化学的に有効な分子グラフを生成できることを示した。
グラフ)SPNsは、正準順序付けによる置換不変性を保証するのに有用である。
関連論文リスト
- Sum-Product-Set Networks: Deep Tractable Models for Tree-Structured Graphs [0.0]
木構造グラフデータから木構造グラフデータへの確率回路の拡張である和積集合ネットワークを提案する。
我々は,ニューラルネットワークに基づく様々な抽出可能なモデルに対して,抽出可能なモデルが比較可能であることを実証した。
論文 参考訳(メタデータ) (2024-08-14T09:13:27Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph
Generation [43.196067037856515]
グラフ生成モデルは生物学、化学、社会科学に広く応用されている。
現在の先行自己回帰モデルは、グラフの置換不変性を取り込むことができない。
置換不変グラフ生成のための連続時間生成拡散プロセスを提案する。
論文 参考訳(メタデータ) (2022-12-04T15:12:44Z) - Graph Neural Network Bandits [89.31889875864599]
グラフ構造データ上で定義された報酬関数を用いた帯域最適化問題を考察する。
この設定の主な課題は、大きなドメインへのスケーリングと、多くのノードを持つグラフへのスケーリングである。
グラフニューラルネットワーク(GNN)を用いて報酬関数を推定できることを示す。
論文 参考訳(メタデータ) (2022-07-13T18:12:36Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
グラフ生成モデルはグラフ上の分布を定義する。
グラフ上の正確な結合確率とシーケンシャルプロセスのノード順序を導出する。
我々は,従来の手法のアドホックノード順序を使わずに,この境界を最大化してグラフ生成モデルを訓練する。
論文 参考訳(メタデータ) (2021-06-11T06:37:52Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z) - Sum-product networks: A survey [0.0]
和積ネットワーク(英: sum-product network、SPN)は、根付き非巡回有向グラフに基づく確率モデルである。
本稿では、SPNの定義、データからの推論と学習のための主要なアルゴリズム、メインアプリケーション、ソフトウェアライブラリの簡単なレビュー、関連するモデルとの比較などについて調査する。
論文 参考訳(メタデータ) (2020-04-02T17:46:29Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
本稿では,最近のスコアベース生成モデルを用いて,グラフモデリングにおける置換不変手法を提案する。
特に、入力グラフにおけるデータ分布の勾配をモデル化するために、置換同変のマルチチャネルグラフニューラルネットワークを設計する。
グラフ生成では、我々の学習アプローチはベンチマークデータセット上の既存のモデルよりも良い、あるいは同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-02T03:06:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。