3C: Confidence-Guided Clustering and Contrastive Learning for Unsupervised Person Re-Identification
- URL: http://arxiv.org/abs/2408.09464v1
- Date: Sun, 18 Aug 2024 13:14:20 GMT
- Title: 3C: Confidence-Guided Clustering and Contrastive Learning for Unsupervised Person Re-Identification
- Authors: Mingxiao Zheng, Yanpeng Qu, Changjing Shang, Longzhi Yang, Qiang Shen,
- Abstract summary: Unsupervised person re-identification (Re-ID) aims to learn a feature network with cross-camera retrieval capability in unlabelled datasets.
A confidence-guided clustering and contrastive learning (3C) framework is proposed for unsupervised person Re-ID.
- Score: 10.173539278449262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised person re-identification (Re-ID) aims to learn a feature network with cross-camera retrieval capability in unlabelled datasets. Although the pseudo-label based methods have achieved great progress in Re-ID, their performance in the complex scenario still needs to sharpen up. In order to reduce potential misguidance, including feature bias, noise pseudo-labels and invalid hard samples, accumulated during the learning process, in this pa per, a confidence-guided clustering and contrastive learning (3C) framework is proposed for unsupervised person Re-ID. This 3C framework presents three confidence degrees. i) In the clustering stage, the confidence of the discrepancy between samples and clusters is proposed to implement a harmonic discrepancy clustering algorithm (HDC). ii) In the forward-propagation training stage, the confidence of the camera diversity of a cluster is evaluated via a novel camera information entropy (CIE). Then, the clusters with high CIE values will play leading roles in training the model. iii) In the back-propagation training stage, the confidence of the hard sample in each cluster is designed and further used in a confidence integrated harmonic discrepancy (CHD), to select the informative sample for updating the memory in contrastive learning. Extensive experiments on three popular Re-ID benchmarks demonstrate the superiority of the proposed framework. Particularly, the 3C framework achieves state-of-the-art results: 86.7%/94.7%, 45.3%/73.1% and 47.1%/90.6% in terms of mAP/Rank-1 accuracy on Market-1501, the com plex datasets MSMT17 and VeRi-776, respectively. Code is available at https://github.com/stone5265/3C-reid.
Related papers
- Distribution-Aware Robust Learning from Long-Tailed Data with Noisy Labels [8.14255560923536]
Real-world data often exhibit long-tailed distributions and label noise, significantly degrading generalization performance.
Recent studies have focused on noisy sample selection methods that estimate the centroid of each class based on high-confidence samples within each target class.
We present Distribution-aware Sample Selection and Contrastive Learning (DaSC) to generate enhanced class centroids.
arXiv Detail & Related papers (2024-07-23T19:06:15Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
Clustering is the task of gathering similar data samples into clusters without using any predefined labels.
We propose a novel contrastive clustering method, Cross-instance guided Contrastive Clustering (C3)
Our proposed method can outperform state-of-the-art algorithms on benchmark computer vision datasets.
arXiv Detail & Related papers (2022-11-14T06:28:07Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - Hybrid Dynamic Contrast and Probability Distillation for Unsupervised
Person Re-Id [109.1730454118532]
Unsupervised person re-identification (Re-Id) has attracted increasing attention due to its practical application in the read-world video surveillance system.
We present the hybrid dynamic cluster contrast and probability distillation algorithm.
It formulates the unsupervised Re-Id problem into an unified local-to-global dynamic contrastive learning and self-supervised probability distillation framework.
arXiv Detail & Related papers (2021-09-29T02:56:45Z) - Cluster-guided Asymmetric Contrastive Learning for Unsupervised Person
Re-Identification [10.678189926088669]
Unsupervised person re-identification (Re-ID) aims to match pedestrian images from different camera views in unsupervised setting.
Existing methods for unsupervised person Re-ID are usually built upon the pseudo labels from clustering.
We propose a Cluster-guided Asymmetric Contrastive Learning (CACL) approach for unsupervised person Re-ID.
arXiv Detail & Related papers (2021-06-15T02:40:22Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Temporal Continuity Based Unsupervised Learning for Person
Re-Identification [15.195514083289801]
We propose an unsupervised center-based clustering approach capable of progressively learning and exploiting the underlying re-id discriminative information.
We call our framework Temporal Continuity based Unsupervised Learning (TCUL)
Specifically, TCUL simultaneously does center based clustering of unlabeled (target) dataset and fine-tunes a convolutional neural network (CNN) pre-trained on irrelevant labeled (source) dataset.
It exploits temporally continuous nature of images within-camera jointly with spatial similarity of feature maps across-cameras to generate reliable pseudo-labels for training a re-identification model.
arXiv Detail & Related papers (2020-09-01T05:29:30Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
Person re-identification (re-ID) is an important topic in computer vision.
This paper studies the unsupervised setting of re-ID, which does not require any labeled information.
Experiments on two image-based and video-based datasets demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2020-04-07T17:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.