Distribution-Aware Robust Learning from Long-Tailed Data with Noisy Labels
- URL: http://arxiv.org/abs/2407.16802v1
- Date: Tue, 23 Jul 2024 19:06:15 GMT
- Title: Distribution-Aware Robust Learning from Long-Tailed Data with Noisy Labels
- Authors: Jae Soon Baik, In Young Yoon, Kun Hoon Kim, Jun Won Choi,
- Abstract summary: Real-world data often exhibit long-tailed distributions and label noise, significantly degrading generalization performance.
Recent studies have focused on noisy sample selection methods that estimate the centroid of each class based on high-confidence samples within each target class.
We present Distribution-aware Sample Selection and Contrastive Learning (DaSC) to generate enhanced class centroids.
- Score: 8.14255560923536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have demonstrated remarkable advancements in various fields using large, well-annotated datasets. However, real-world data often exhibit long-tailed distributions and label noise, significantly degrading generalization performance. Recent studies addressing these issues have focused on noisy sample selection methods that estimate the centroid of each class based on high-confidence samples within each target class. The performance of these methods is limited because they use only the training samples within each class for class centroid estimation, making the quality of centroids susceptible to long-tailed distributions and noisy labels. In this study, we present a robust training framework called Distribution-aware Sample Selection and Contrastive Learning (DaSC). Specifically, DaSC introduces a Distribution-aware Class Centroid Estimation (DaCC) to generate enhanced class centroids. DaCC performs weighted averaging of the features from all samples, with weights determined based on model predictions. Additionally, we propose a confidence-aware contrastive learning strategy to obtain balanced and robust representations. The training samples are categorized into high-confidence and low-confidence samples. Our method then applies Semi-supervised Balanced Contrastive Loss (SBCL) using high-confidence samples, leveraging reliable label information to mitigate class bias. For the low-confidence samples, our method computes Mixup-enhanced Instance Discrimination Loss (MIDL) to improve their representations in a self-supervised manner. Our experimental results on CIFAR and real-world noisy-label datasets demonstrate the superior performance of the proposed DaSC compared to previous approaches.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Crowd-Certain: Label Aggregation in Crowdsourced and Ensemble Learning
Classification [0.0]
We introduce Crowd-Certain, a novel approach for label aggregation in crowdsourced and ensemble learning classification tasks.
The proposed method uses the consistency of the annotators versus a trained classifier to determine a reliability score for each annotator.
We extensively evaluated our approach against ten existing techniques across ten different datasets, each labeled by varying numbers of annotators.
arXiv Detail & Related papers (2023-10-25T01:58:37Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Learning with Noisy Labels through Learnable Weighting and Centroid Similarity [5.187216033152917]
noisy labels are prevalent in domains such as medical diagnosis and autonomous driving.
We introduce a novel method for training machine learning models in the presence of noisy labels.
Our results show that our method consistently outperforms the existing state-of-the-art techniques.
arXiv Detail & Related papers (2023-03-16T16:43:24Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Addressing Class Imbalance in Semi-supervised Image Segmentation: A
Study on Cardiac MRI [28.656853454251426]
Inadequate training for those particular classes could introduce more noise to the generated pseudo labels, affecting overall learning.
We propose maintaining a confidence array that records class-wise performance during training.
A fuzzy fusion of these confidence scores is proposed to adaptively prioritize individual confidence metrics in every sample.
Our proposed method considers all the under-performing classes with dynamic weighting and tries to remove most of the noises during training.
arXiv Detail & Related papers (2022-08-31T21:25:00Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - Multi-Class Data Description for Out-of-distribution Detection [25.853322158250435]
Deep-MCDD is effective to detect out-of-distribution (OOD) samples as well as classify in-distribution (ID) samples.
By integrating the concept of Gaussian discriminant analysis into deep neural networks, we propose a deep learning objective to learn class-conditional distributions.
arXiv Detail & Related papers (2021-04-02T08:41:51Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.