論文の概要: A Logic for Policy Based Resource Exchanges in Multiagent Systems
- arxiv url: http://arxiv.org/abs/2408.09516v1
- Date: Sun, 18 Aug 2024 15:43:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:20:04.354572
- Title: A Logic for Policy Based Resource Exchanges in Multiagent Systems
- Title(参考訳): マルチエージェントシステムにおけるポリシーに基づく資源交換の論理
- Authors: Lorenzo Ceragioli, Pierpaolo Degano, Letterio Galletta, Luca Viganò,
- Abstract要約: 多エージェントシステムでは、自律エージェントは互いに相互作用し、個人的および集団的な目標を達成する。
エージェントが取引ポリシーを指定・従う形式的な設定として交換環境を提案する。
本稿では,交換環境を表現するための基本的なツールとして,線形論理の計算的断片の決定可能な拡張を導入する。
- 参考スコア(独自算出の注目度): 1.4999444543328289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multiagent systems autonomous agents interact with each other to achieve individual and collective goals. Typical interactions concern negotiation and agreement on resource exchanges. Modeling and formalizing these agreements pose significant challenges, particularly in capturing the dynamic behaviour of agents, while ensuring that resources are correctly handled. Here, we propose exchange environments as a formal setting where agents specify and obey exchange policies, which are declarative statements about what resources they offer and what they require in return. Furthermore, we introduce a decidable extension of the computational fragment of linear logic as a fundamental tool for representing exchange environments and studying their dynamics in terms of provability.
- Abstract(参考訳): 多エージェントシステムでは、自律エージェントは互いに相互作用し、個人的および集団的な目標を達成する。
典型的な相互作用は、資源交換に関する交渉と合意に関するものである。
これらの合意のモデル化と形式化は、特にエージェントの動的な振る舞いを捉えながら、リソースが正しく扱われることを確実にする上で、重要な課題となる。
ここでは、エージェントが交換ポリシーを規定し、従う形式的な設定として、交換環境を提案する。
さらに、線形論理の計算的断片を決定可能な拡張として、交換環境を表現し、それらの力学を実用性の観点から研究するための基本的なツールとして紹介する。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Formal Ethical Obligations in Reinforcement Learning Agents: Verification and Policy Updates [0.0]
設計者は、エージェントがすべきこと、それが実際に起きていることとどのように衝突するか、そして競合を取り除くためにポリシーをどう修正するかを、自動的に判断するツールが必要です。
我々は、設計時にこの推論を可能にするために、新しいデオン論理、期待されるアクト・ユーティタリアンデオン論理を提案する。
報酬レベルで働くアプローチとは異なり、論理レベルで働くことはトレードオフの透明性を高める。
論文 参考訳(メタデータ) (2024-07-31T20:21:15Z) - Transforming Competition into Collaboration: The Revolutionary Role of Multi-Agent Systems and Language Models in Modern Organizations [0.0]
本稿では,マルチエージェントシステム理論(SMA)と大規模言語モデル(LLM)に基づく計算エンティティがユーザインタラクションに与える影響について考察する。
提案手法では,大規模言語モデル (LLM) から発達したエージェントを用いて,行動要素を考慮したプロトタイピングを行う。
我々は,多エージェントシステム理論(SMA)と大規模言語モデル(LLM)に基づく革新的な利用に基づいて,組織戦略に有用なエージェントの開発の可能性を示す。
論文 参考訳(メタデータ) (2024-03-12T15:56:10Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
マルチエージェント強化学習(MARL)における一般化の課題
エージェントが未確認のコプレイヤーに影響される程度は、エージェントのポリシーと特定のシナリオに依存する。
与えられたシナリオと環境におけるエージェント間の相互作用強度を定量化する指標であるLoI(Level of Influence)を提示する。
論文 参考訳(メタデータ) (2023-10-11T06:09:26Z) - Context-Aware Composition of Agent Policies by Markov Decision Process
Entity Embeddings and Agent Ensembles [1.124711723767572]
計算エージェントは生命の多くの領域で人間をサポートし、従って異質な文脈で見られる。
サービスを実行し、目標志向の行動を実行するためには、エージェントは事前の知識を必要とする。
異種コンテキストの表現を可能にする新しいシミュレーションベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-28T12:13:36Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
MARL(Multi-Agent Reinforcement Learning)では、エージェントが直接通信できる特別なチャンネルがしばしば導入される。
本稿では,エージェントの集団的性能を向上させるために,エージェントが提供した信号の伝達と解釈を学習する,インテリジェントなファシリテータを通じてエージェントがコミュニケーションする手法を提案する。
論文 参考訳(メタデータ) (2022-05-21T14:11:33Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Counterfactual Multi-Agent Reinforcement Learning with Graph Convolution
Communication [5.5438676149999075]
本稿では,エージェントが協調してシステムの有用性を最大化する,完全協調型マルチエージェントシステムについて考察する。
マルチエージェントシステムには,エージェント間の相互作用を伝達し,理解する能力が必要である。
エージェント間の通信を可能にするアーキテクチャを開発し,各エージェントに対するシステム報酬を調整する。
論文 参考訳(メタデータ) (2020-04-01T14:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。