AnomalyFactory: Regard Anomaly Generation as Unsupervised Anomaly Localization
- URL: http://arxiv.org/abs/2408.09533v1
- Date: Sun, 18 Aug 2024 16:40:11 GMT
- Title: AnomalyFactory: Regard Anomaly Generation as Unsupervised Anomaly Localization
- Authors: Ying Zhao,
- Abstract summary: AnomalyFactory unifies anomaly generation and localization with same network architecture.
Comprehensive experiments carried out on 5 datasets, including MVTecAD, VisA, MVTecLOCO, MADSim and RealIAD.
- Score: 3.180143442781838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in anomaly generation approaches alleviate the effect of data insufficiency on task of anomaly localization. While effective, most of them learn multiple large generative models on different datasets and cumbersome anomaly prediction models for different classes. To address the limitations, we propose a novel scalable framework, named AnomalyFactory, that unifies unsupervised anomaly generation and localization with same network architecture. It starts with a BootGenerator that combines structure of a target edge map and appearance of a reference color image with the guidance of a learned heatmap. Then, it proceeds with a FlareGenerator that receives supervision signals from the BootGenerator and reforms the heatmap to indicate anomaly locations in the generated image. Finally, it easily transforms the same network architecture to a BlazeDetector that localizes anomaly pixels with the learned heatmap by converting the anomaly images generated by the FlareGenerator to normal images. By manipulating the target edge maps and combining them with various reference images, AnomalyFactory generates authentic and diversity samples cross domains. Comprehensive experiments carried on 5 datasets, including MVTecAD, VisA, MVTecLOCO, MADSim and RealIAD, demonstrate that our approach is superior to competitors in generation capability and scalability.
Related papers
- GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - ISSTAD: Incremental Self-Supervised Learning Based on Transformer for
Anomaly Detection and Localization [12.975540251326683]
We introduce a novel approach based on the Transformer backbone network.
We train a Masked Autoencoder (MAE) model solely on normal images.
In the subsequent stage, we apply pixel-level data augmentation techniques to generate corrupted normal images.
This process allows the model to learn how to repair corrupted regions and classify the status of each pixel.
arXiv Detail & Related papers (2023-03-30T13:11:26Z) - The Eyecandies Dataset for Unsupervised Multimodal Anomaly Detection and
Localization [1.3124513975412255]
Eyecandies is a novel dataset for unsupervised anomaly detection and localization.
Photo-realistic images of procedurally generated candies are rendered in a controlled environment under multiple lightning conditions.
arXiv Detail & Related papers (2022-10-10T11:19:58Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Anomaly localization by modeling perceptual features [3.04585143845864]
Feature-Augmented VAE is trained by reconstructing the input image in pixel space, and also in several different feature spaces.
It achieves clear improvement over state-of-the-art methods on the MVTec anomaly detection and localization datasets.
arXiv Detail & Related papers (2020-08-12T15:09:13Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.