Non-Variational Quantum Random Access Optimization with Alternating Operator Ansatz
- URL: http://arxiv.org/abs/2502.04277v1
- Date: Thu, 06 Feb 2025 18:25:31 GMT
- Title: Non-Variational Quantum Random Access Optimization with Alternating Operator Ansatz
- Authors: Zichang He, Rudy Raymond, Ruslan Shaydulin, Marco Pistoia,
- Abstract summary: Quantum Random Access Optimization (QRAO) has been proposed to reduce the space requirements of quantum optimization.<n>We show that instance-independent 'fixed' parameters achieve good performance, removing the need for variational parameter optimization.<n>Our results pave the way for the practical execution of QRAO on early fault-tolerant quantum computers.
- Score: 3.5773675235837974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving hard optimization problems is one of the most promising application domains for quantum computers due to the ubiquity of such problems in industry and the availability of broadly applicable quantum speedups. However, the ability of near-term quantum computers to tackle industrial-scale optimization problems is limited by their size and the overheads of quantum error correction. Quantum Random Access Optimization (QRAO) has been proposed to reduce the space requirements of quantum optimization. However, to date QRAO has only been implemented using variational algorithms, which suffer from the need to train instance-specific variational parameters, making them difficult to scale. We propose and benchmark a non-variational approach to QRAO based on the Quantum Alternating Operator Ansatz (QAOA) for the MaxCut problem. We show that instance-independent ``fixed'' parameters achieve good performance, removing the need for variational parameter optimization. Additionally, we evaluate different design choices, such as various mixers and initial states, as well as QAOA operator implementations when customizing for QRAO, and identify a strategy that performs well in practice. Our results pave the way for the practical execution of QRAO on early fault-tolerant quantum computers.
Related papers
- Solving Constrained Combinatorial Optimization Problems with Variational Quantum Imaginary Time Evolution [4.266376725904727]
We show that VarQITE achieves significantly lower mean optimality gaps compared to other conventional methods.
We demonstrate that scaling the Hamiltonian can further reduce optimization costs and accelerate convergence.
arXiv Detail & Related papers (2025-04-17T03:09:37Z) - Post-Variational Ground State Estimation via QPE-Based Quantum Imaginary Time Evolution [0.0]
We present the QPE-based quantum imaginary time evolution (QPE-QITE) algorithm, designed for post-variational ground state estimation.
Unlike variational methods, QPE-QITE employs additional ancillae to project the quantum register into low-energy eigenstates.
We demonstrate the capabilities of QPE-QITE by applying it to the low-autocorrelation binary sequences (LABS) problem.
arXiv Detail & Related papers (2025-04-15T18:44:14Z) - A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems [4.266376725904727]
We introduce a comprehensive benchmarking framework designed to evaluate quantum optimization techniques against well-established NP-hard problems.
Our framework focuses on key problem classes, including the Multi-Dimensional Knapsack Problem (MDKP), Maximum Independent Set (MIS), Quadratic Assignment Problem (QAP), and Market Share Problem (MSP)
arXiv Detail & Related papers (2025-03-15T13:02:22Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
We study the scaling of the quantum resources to reach a fixed success probability as the problem size increases.
Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop.
arXiv Detail & Related papers (2023-07-31T18:01:15Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.