Data-driven Conditional Instrumental Variables for Debiasing Recommender Systems
- URL: http://arxiv.org/abs/2408.09651v1
- Date: Mon, 19 Aug 2024 02:17:22 GMT
- Title: Data-driven Conditional Instrumental Variables for Debiasing Recommender Systems
- Authors: Zhirong Huang, Shichao Zhang, Debo Cheng, Jiuyong Li, Lin Liu, Guangquan Lu,
- Abstract summary: In recommender systems, latent variables can cause user-item interaction data to deviate from true user preferences.
We propose a novel data-driven conditional IV (CIV) debiasing method for recommender systems, called CIV4Rec.4Rec.
- Score: 25.632817469744325
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recommender systems, latent variables can cause user-item interaction data to deviate from true user preferences. This biased data is then used to train recommendation models, further amplifying the bias and ultimately compromising both recommendation accuracy and user satisfaction. Instrumental Variable (IV) methods are effective tools for addressing the confounding bias introduced by latent variables; however, identifying a valid IV is often challenging. To overcome this issue, we propose a novel data-driven conditional IV (CIV) debiasing method for recommender systems, called CIV4Rec. CIV4Rec automatically generates valid CIVs and their corresponding conditioning sets directly from interaction data, significantly reducing the complexity of IV selection while effectively mitigating the confounding bias caused by latent variables in recommender systems. Specifically, CIV4Rec leverages a variational autoencoder (VAE) to generate the representations of the CIV and its conditional set from interaction data, followed by the application of least squares to derive causal representations for click prediction. Extensive experiments on two real-world datasets, Movielens-10M and Douban-Movie, demonstrate that our CIV4Rec successfully identifies valid CIVs, effectively reduces bias, and consequently improves recommendation accuracy.
Related papers
- Mitigating Dual Latent Confounding Biases in Recommender Systems [16.119503935921188]
We propose a novel debiasing method that integrates the Instrumental Variables (IV) approach and identifiable Variational Auto-Encoder (iVAE) for Debiased representation learning.
IViDR addresses confounding bias caused by latent confounders between items and user feedback.
It infers identifiable representations of latent confounders between item exposure and user feedback from both the original and debiased interaction data.
arXiv Detail & Related papers (2024-10-16T10:58:53Z) - CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence [55.21518669075263]
CURE4Rec is the first comprehensive benchmark for recommendation unlearning evaluation.
We consider the deeper influence of unlearning on recommendation fairness and robustness towards data with varying impact levels.
arXiv Detail & Related papers (2024-08-26T16:21:50Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Learning Decision Policies with Instrumental Variables through Double Machine Learning [16.842233444365764]
A common issue in learning decision-making policies in data-rich settings is spurious correlations in the offline dataset.
We propose DML-IV, a non-linear IV regression method that reduces the bias in two-stage IV regressions.
It outperforms state-of-the-art IV regression methods on IV regression benchmarks and learns high-performing policies in the presence of instruments.
arXiv Detail & Related papers (2024-05-14T10:55:04Z) - Regularized DeepIV with Model Selection [72.17508967124081]
Regularized DeepIV (RDIV) regression can converge to the least-norm IV solution.
Our method matches the current state-of-the-art convergence rate.
arXiv Detail & Related papers (2024-03-07T05:38:56Z) - Causal Inference with Conditional Instruments using Deep Generative
Models [21.771832598942677]
A standard IV is expected to be related to the treatment variable and independent of all other variables in the system.
conditional IV (CIV) method has been proposed to allow a variable to be an instrument conditioning on a set of variables.
We propose to learn the representations of a CIV and its conditioning set from data with latent confounders for average causal effect estimation.
arXiv Detail & Related papers (2022-11-29T14:31:54Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
We propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework.
AUR consists of a new uncertainty estimator along with a normal recommender model.
As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty.
arXiv Detail & Related papers (2022-09-22T04:32:51Z) - Debiasing Learning for Membership Inference Attacks Against Recommender
Systems [79.48353547307887]
Learned recommender systems may inadvertently leak information about their training data, leading to privacy violations.
We investigate privacy threats faced by recommender systems through the lens of membership inference.
We propose a Debiasing Learning for Membership Inference Attacks against recommender systems (DL-MIA) framework that has four main components.
arXiv Detail & Related papers (2022-06-24T17:57:34Z) - Ancestral Instrument Method for Causal Inference without Complete
Knowledge [0.0]
Unobserved confounding is the main obstacle to causal effect estimation from observational data.
Conditional IVs have been proposed to relax the requirement of standard IVs by conditioning on a set of observed variables.
We develop an algorithm for unbiased causal effect estimation with a given ancestral IV and observational data.
arXiv Detail & Related papers (2022-01-11T07:02:16Z) - Auto IV: Counterfactual Prediction via Automatic Instrumental Variable
Decomposition [21.90157954233519]
Instrumental variables (IVs) play an important role in causal inference with unobserved confounders.
Existing IV-based counterfactual prediction methods need well-predefined IVs.
We propose a novel algorithm to automatically generate representations serving the role of IVs from observed variables.
arXiv Detail & Related papers (2021-07-13T07:30:21Z) - Control Variates for Slate Off-Policy Evaluation [112.35528337130118]
We study the problem of off-policy evaluation from batched contextual bandit data with multidimensional actions.
We obtain new estimators with risk improvement guarantees over both the PI and self-normalized PI estimators.
arXiv Detail & Related papers (2021-06-15T06:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.