Mitigating Dual Latent Confounding Biases in Recommender Systems
- URL: http://arxiv.org/abs/2410.12451v1
- Date: Wed, 16 Oct 2024 10:58:53 GMT
- Title: Mitigating Dual Latent Confounding Biases in Recommender Systems
- Authors: Jianfeng Deng, Qingfeng Chen, Debo Cheng, Jiuyong Li, Lin Liu, Xiaojing Du,
- Abstract summary: We propose a novel debiasing method that integrates the Instrumental Variables (IV) approach and identifiable Variational Auto-Encoder (iVAE) for Debiased representation learning.
IViDR addresses confounding bias caused by latent confounders between items and user feedback.
It infers identifiable representations of latent confounders between item exposure and user feedback from both the original and debiased interaction data.
- Score: 16.119503935921188
- License:
- Abstract: Recommender systems are extensively utilised across various areas to predict user preferences for personalised experiences and enhanced user engagement and satisfaction. Traditional recommender systems, however, are complicated by confounding bias, particularly in the presence of latent confounders that affect both item exposure and user feedback. Existing debiasing methods often fail to capture the complex interactions caused by latent confounders in interaction data, especially when dual latent confounders affect both the user and item sides. To address this, we propose a novel debiasing method that jointly integrates the Instrumental Variables (IV) approach and identifiable Variational Auto-Encoder (iVAE) for Debiased representation learning in Recommendation systems, referred to as IViDR. Specifically, IViDR leverages the embeddings of user features as IVs to address confounding bias caused by latent confounders between items and user feedback, and reconstructs the embedding of items to obtain debiased interaction data. Moreover, IViDR employs an Identifiable Variational Auto-Encoder (iVAE) to infer identifiable representations of latent confounders between item exposure and user feedback from both the original and debiased interaction data. Additionally, we provide theoretical analyses of the soundness of using IV and the identifiability of the latent representations. Extensive experiments on both synthetic and real-world datasets demonstrate that IViDR outperforms state-of-the-art models in reducing bias and providing reliable recommendations.
Related papers
- Data-driven Conditional Instrumental Variables for Debiasing Recommender Systems [25.632817469744325]
In recommender systems, latent variables can cause user-item interaction data to deviate from true user preferences.
We propose a novel data-driven conditional IV (CIV) debiasing method for recommender systems, called CIV4Rec.4Rec.
arXiv Detail & Related papers (2024-08-19T02:17:22Z) - Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop [65.23044868332693]
We investigate the impact of source bias on the realm of recommender systems.
We show the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification.
We introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC.
arXiv Detail & Related papers (2024-05-28T09:34:50Z) - Cross-Domain Causal Preference Learning for Out-of-Distribution Recommendation [0.8315707564931466]
Current recommender systems rely on the assumption that the training and testing datasets have identical distributions.
This study proposes a novel model called Cross-Domain Causal Preference Learning for Out-of-Distribution Recommendation (CDCOR)
arXiv Detail & Related papers (2024-04-23T09:21:15Z) - BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
We propose an innovative framework, BivRec, that jointly trains the recommendation tasks in both ID and multimodal views.
BivRec achieves state-of-the-art performance on five datasets and showcases various practical advantages.
arXiv Detail & Related papers (2024-02-27T09:10:41Z) - Separating and Learning Latent Confounders to Enhancing User Preferences Modeling [6.0853798070913845]
We propose a novel framework, Separating and Learning Latent Confounders For Recommendation (SLFR)
SLFR obtains the representation of unmeasured confounders to identify the counterfactual feedback by disentangling user preferences and unmeasured confounders.
Experiments in five real-world datasets validate the advantages of our method.
arXiv Detail & Related papers (2023-11-02T08:42:50Z) - Causal Disentangled Variational Auto-Encoder for Preference
Understanding in Recommendation [50.93536377097659]
This paper introduces the Causal Disentangled Variational Auto-Encoder (CaD-VAE), a novel approach for learning causal disentangled representations from interaction data in recommender systems.
The approach utilizes structural causal models to generate causal representations that describe the causal relationship between latent factors.
arXiv Detail & Related papers (2023-04-17T00:10:56Z) - Debiasing Recommendation by Learning Identifiable Latent Confounders [49.16119112336605]
Confounding bias arises due to the presence of unmeasured variables that can affect both a user's exposure and feedback.
Existing methods either (1) make untenable assumptions about these unmeasured variables or (2) directly infer latent confounders from users' exposure.
We propose a novel method, i.e., identifiable deconfounder (iDCF), which leverages a set of proxy variables to resolve the aforementioned non-identification issue.
arXiv Detail & Related papers (2023-02-10T05:10:26Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
A new trend in recommender system research is to negate the influence of confounders from a causal perspective.
We model the recommendation as a multi-cause multi-outcome (MCMO) inference problem.
We show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space.
arXiv Detail & Related papers (2022-01-06T15:00:01Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.