論文の概要: GANPrompt: Enhancing Robustness in LLM-Based Recommendations with GAN-Enhanced Diversity Prompts
- arxiv url: http://arxiv.org/abs/2408.09671v1
- Date: Mon, 19 Aug 2024 03:13:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:22:25.759179
- Title: GANPrompt: Enhancing Robustness in LLM-Based Recommendations with GAN-Enhanced Diversity Prompts
- Title(参考訳): GANプロンプト:GAN強化ダイバーシティプロンプトを用いたLCM勧告におけるロバスト性向上
- Authors: Xinyu Li, Chuang Zhao, Hongke Zhao, Likang Wu, Ming HE,
- Abstract要約: 本稿では,GAN(Generative Adversarial Networks)に基づく多次元大規模言語モデルの多様性促進フレームワークであるGANPromptを提案する。
GANPromptはまず、多次元ユーザ行動データを分析して多様なプロンプトを生成することができるジェネレータを訓練する。
これらの多様なプロンプトは、目に見えないプロンプトに直面して性能を向上させるためにLLMを訓練するために使用される。
- 参考スコア(独自算出の注目度): 15.920623515602038
- License:
- Abstract: In recent years, LLM has demonstrated remarkable proficiency in comprehending and generating natural language, with a growing prevalence in the domain of recommender systems. However, LLM continues to face a significant challenge in that it is highly susceptible to the influence of prompt words. This inconsistency in response to minor alterations in prompt input may compromise the accuracy and resilience of recommendation models. To address this issue, this paper proposes GANPrompt, a multi-dimensional large language model prompt diversity framework based on Generative Adversarial Networks (GANs). The framework enhances the model's adaptability and stability to diverse prompts by integrating GAN generation techniques with the deep semantic understanding capabilities of LLMs. GANPrompt first trains a generator capable of producing diverse prompts by analysing multidimensional user behavioural data. These diverse prompts are then used to train the LLM to improve its performance in the face of unseen prompts. Furthermore, to ensure a high degree of diversity and relevance of the prompts, this study introduces a mathematical theory-based diversity constraint mechanism that optimises the generated prompts to ensure that they are not only superficially distinct, but also semantically cover a wide range of user intentions. Through extensive experiments on multiple datasets, we demonstrate the effectiveness of the proposed framework, especially in improving the adaptability and robustness of recommender systems in complex and dynamic environments. The experimental results demonstrate that GANPrompt yields substantial enhancements in accuracy and robustness relative to existing state-of-the-art methodologies.
- Abstract(参考訳): 近年、LLMは自然言語の理解と生成に優れた能力を示しており、レコメンデーターシステムの領域では人気が高まっている。
しかし、LLMは、素早い言葉の影響を受けやすいという点において、大きな課題に直面し続けている。
インプットのわずかな変更に対応するこの矛盾は、レコメンデーションモデルの精度とレジリエンスを損なう可能性がある。
本稿では,GAN(Generative Adversarial Networks)に基づく多次元大規模言語モデルであるGANPromptを提案する。
このフレームワークは、GAN生成技術とLLMの深い意味理解能力を統合することにより、モデルの多様なプロンプトへの適応性と安定性を高める。
GANPromptはまず、多次元ユーザ行動データを分析して多様なプロンプトを生成することができるジェネレータを訓練する。
これらの多様なプロンプトは、目に見えないプロンプトに直面して性能を向上させるためにLLMを訓練するために使用される。
さらに, プロンプトの多様性と関連性を確保するため, 本研究では, 生成プロンプトを最適化する数学的理論に基づく多様性制約機構を導入し, それらが表層的に異なるだけでなく, 意味的に幅広いユーザ意図をカバーすることを保証する。
複数のデータセットに関する広範な実験を通じて,提案フレームワークの有効性,特に複雑・動的環境におけるレコメンダシステムの適応性と堅牢性の向上を実証する。
実験結果から, GANPromptは既存の最先端手法と比較して, 精度とロバスト性を大幅に向上することが示された。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
本稿では,Large Language Models(LLM)とディープラーニング技術を活用して,レコメンデータシステムを強化する新しい手法を提案する。
提案フレームワークは,マルチモーダル情報処理を取り入れたレコメンデーションの精度と妥当性を,統一された潜在空間表現を用いて向上することを目的としている。
論文 参考訳(メタデータ) (2024-08-08T04:31:29Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm [43.2625101868969]
本稿では,大規模言語モデル (LLM) の素早い単語を要約する。
次に、刺激とフレームワークのプロンプトを組み合わせたオートプロンプトグラフィカルパラダイム(APGP)を提案する。
このフレームワークは、感情刺激因子の自動生成と考慮を含む。
論文 参考訳(メタデータ) (2024-04-16T12:19:08Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - Adapting LLMs for Efficient Context Processing through Soft Prompt Compression [1.1550486371582305]
本稿では,大規模言語モデルを合理化された文脈処理のために戦略的に調整する,革新的なフレームワークを提案する。
我々の手法はSoftPromptCompと呼ばれ、動的に生成されたソフトプロンプトで自然言語をアマルガメイトし、簡潔でセマンティックに頑健な文脈の描写をフォージする。
我々は,我々のフレームワークが計算オーバーヘッドを著しく減らし,LLMの有効性を様々なベンチマークで向上させることを実証した。
論文 参考訳(メタデータ) (2024-04-07T15:44:20Z) - Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review [2.780460221321639]
本稿では,リフォームレコメンダシステムにおける大規模言語モデルの重要性について述べる。
LLMは、言葉の複雑な解釈において、その適応性を示す、アイテムを推薦するのに非常に熟練している。
トランスフォーメーションの可能性にもかかわらず、入力プロンプトに対する感受性、時には誤解釈、予期せぬ推奨など、課題は続いている。
論文 参考訳(メタデータ) (2024-02-11T00:24:17Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。