Implicit Grid Convolution for Multi-Scale Image Super-Resolution
- URL: http://arxiv.org/abs/2408.09674v2
- Date: Fri, 15 Nov 2024 10:39:48 GMT
- Title: Implicit Grid Convolution for Multi-Scale Image Super-Resolution
- Authors: Dongheon Lee, Seokju Yun, Youngmin Ro,
- Abstract summary: We propose a multi-scale framework that employs a single encoder in conjunction with Implicit Grid Convolution (IGConv)
Our framework achieves comparable performance to existing fixed-scale methods while reducing the training budget and stored parameters three-fold.
- Score: 6.8410780175245165
- License:
- Abstract: For Image Super-Resolution (SR), it is common to train and evaluate scale-specific models composed of an encoder and upsampler for each targeted scale. Consequently, many SR studies encounter substantial training times and complex deployment requirements. In this paper, we address this limitation by training and evaluating multiple scales simultaneously. Notably, we observe that encoder features are similar across scales and that the Sub-Pixel Convolution (SPConv), widely-used scale-specific upsampler, exhibits strong inter-scale correlations in its functionality. Building on these insights, we propose a multi-scale framework that employs a single encoder in conjunction with Implicit Grid Convolution (IGConv), our novel upsampler, which unifies SPConv across all scales within a single module. Extensive experiments demonstrate that our framework achieves comparable performance to existing fixed-scale methods while reducing the training budget and stored parameters three-fold and maintaining the same latency. Additionally, we propose IGConv$^{+}$ to improve performance further by addressing spectral bias and allowing input-dependent upsampling and ensembled prediction. As a result, ATD-IGConv$^{+}$ achieves a notable 0.21dB improvement in PSNR on Urban100$\times$4, while also reducing the training budget, stored parameters, and inference cost compared to the existing ATD.
Related papers
- Robust Hyperspectral Image Panshapring via Sparse Spatial-Spectral Representation [9.3350274016294]
S$3$RNet is a novel framework for hyperspectral image pansharpening.
It combines low-resolution hyperspectral images (LRHSI) with high-resolution multispectral images (HRMSI) through sparse spatial-spectral representation.
S$3$RNet achieves state-of-the-art performance across multiple evaluation metrics.
arXiv Detail & Related papers (2025-01-14T09:09:14Z) - VRVVC: Variable-Rate NeRF-Based Volumetric Video Compression [59.14355576912495]
NeRF-based video has revolutionized visual media by delivering photorealistic Free-Viewpoint Video (FVV) experiences.
The substantial data volumes pose significant challenges for storage and transmission.
We propose VRVVC, a novel end-to-end joint variable-rate framework for video compression.
arXiv Detail & Related papers (2024-12-16T01:28:04Z) - PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [95.98801201266099]
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps.
We propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR.
Our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR.
arXiv Detail & Related papers (2024-11-26T04:49:42Z) - Scale Equalization for Multi-Level Feature Fusion [8.541075075344438]
We find that multi-level features from parallel branches are on different scales.
The scale disequilibrium is a universal and unwanted flaw that leads to detrimental gradient descent.
We propose injecting scale equalizers to achieve scale equilibrium across multi-level features after bilinear upsampling.
arXiv Detail & Related papers (2024-02-02T05:25:51Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Scale-Aware Dynamic Network for Continuous-Scale Super-Resolution [16.67263192454279]
We propose a scale-aware dynamic network (SADN) for continuous-scale SR.
First, we propose a scale-aware dynamic convolutional (SAD-Conv) layer for the feature learning of multiple SR tasks with various scales.
Second, we devise a continuous-scale upsampling module (CSUM) with the multi-bilinear local implicit function (MBLIF) for any-scale upsampling.
arXiv Detail & Related papers (2021-10-29T09:57:48Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - Exploring Multi-Scale Feature Propagation and Communication for Image
Super Resolution [37.91175933401261]
We present a unified formulation over widely-used multi-scale structures.
We propose a generic and efficient multi-scale convolution unit -- Multi-Scale cross-Scale Share-weights convolution (MS$3$-Conv)
arXiv Detail & Related papers (2020-08-01T10:44:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.