論文の概要: Carbon Footprint Accounting Driven by Large Language Models and Retrieval-augmented Generation
- arxiv url: http://arxiv.org/abs/2408.09713v2
- Date: Tue, 20 Aug 2024 12:22:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:22:25.026841
- Title: Carbon Footprint Accounting Driven by Large Language Models and Retrieval-augmented Generation
- Title(参考訳): 大規模言語モデルと検索拡張生成によるカーボンフットプリント会計
- Authors: Haijin Wang, Mianrong Zhang, Zheng Chen, Nan Shang, Shangheng Yao, Fushuan Wen, Junhua Zhao,
- Abstract要約: 従来のライフサイクルアセスメント手法は人間の専門知識に大きく依存しており、ほぼリアルタイムのアップデートを困難にしている。
本稿では,大規模言語モデル(LLM)と検索拡張生成技術を統合し,炭素フットプリント情報検索と分析のリアルタイム,専門的,経済的な側面を強化する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 3.428260237038657
- License:
- Abstract: Carbon footprint accounting is crucial for quantifying greenhouse gas emissions and achieving carbon neutrality.The dynamic nature of processes, accounting rules, carbon-related policies, and energy supply structures necessitates real-time updates of CFA. Traditional life cycle assessment methods rely heavily on human expertise, making near-real-time updates challenging. This paper introduces a novel approach integrating large language models (LLMs) with retrieval-augmented generation technology to enhance the real-time, professional, and economical aspects of carbon footprint information retrieval and analysis. By leveraging LLMs' logical and language understanding abilities and RAG's efficient retrieval capabilities, the proposed method LLMs-RAG-CFA can retrieve more relevant professional information to assist LLMs, enhancing the model's generative abilities. This method offers broad professional coverage, efficient real-time carbon footprint information acquisition and accounting, and cost-effective automation without frequent LLMs' parameter updates. Experimental results across five industries(primary aluminum, lithium battery, photovoltaic, new energy vehicles, and transformers)demonstrate that the LLMs-RAG-CFA method outperforms traditional methods and other LLMs, achieving higher information retrieval rates and significantly lower information deviations and carbon footprint accounting deviations. The economically viable design utilizes RAG technology to balance real-time updates with cost-effectiveness, providing an efficient, reliable, and cost-saving solution for real-time carbon emission management, thereby enhancing environmental sustainability practices.
- Abstract(参考訳): 炭素フットプリントは、温室効果ガス排出量の定量化と炭素中立性の達成に不可欠であり、プロセスの動的な性質、会計規則、炭素関連政策、エネルギー供給構造は、CFAのリアルタイム更新を必要とする。
従来のライフサイクルアセスメント手法は人間の専門知識に大きく依存しており、ほぼリアルタイムのアップデートを困難にしている。
本稿では,大規模言語モデル(LLM)と検索拡張生成技術を統合し,炭素フットプリント情報検索と分析のリアルタイム,専門的,経済的な側面を強化する新しいアプローチを提案する。
LLMの論理的・言語的理解能力とRAGの効率的な検索能力を活用することで、提案手法は、より関連性の高いプロフェッショナル情報を取得してLLMを支援することができ、モデルの生成能力を高めることができる。
本手法は, LLMの頻繁なパラメータ更新を伴わずに, 広範な専門的カバレッジ, 効率的なリアルタイム炭素フットプリント情報取得と会計, 費用対効果の高い自動化を実現する。
LLMs-RAG-CFA法は従来のLLM法や他のLLM法よりも優れており、情報検索率の向上と情報偏差の低減、炭素フットプリントの偏差の低減を図っている。
経済的に実現可能な設計は、RAG技術を利用して、リアルタイム更新とコスト効率のバランスを取り、リアルタイムの二酸化炭素排出量管理のための効率的で信頼性の高いコスト削減ソリューションを提供する。
関連論文リスト
- Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
ジェネレーティブAI(GAI)は、AIoT(Artificial Intelligence of Things)の二酸化炭素排出量を減らす大きな可能性を秘めている
本稿では, 炭素排出量削減のためのGAIの可能性について検討し, 低炭素AIoTのための新しいGAI対応ソリューションを提案する。
本稿では,Large Language Model (LLM) を利用したCO_2排出最適化フレームワークを提案し,このフレームワークにより,プラグ可能なLLMとRetrieval Augmented Generation (RAG) モジュールを設計する。
論文 参考訳(メタデータ) (2024-04-28T05:46:28Z) - AI-driven E-Liability Knowledge Graphs: A Comprehensive Framework for
Supply Chain Carbon Accounting and Emissions Liability Management [0.0]
本稿では,Kaplan と Ramanna が提唱した E-liability carbon accounting method and emissions Liability Management (ELM) を紹介する。
我々は、AIと計算を活用する新しいデータ駆動統合フレームワーク、E-Liability Knowledge Graphフレームワークを紹介します。
論文 参考訳(メタデータ) (2023-11-26T23:09:36Z) - Leveraging AI-derived Data for Carbon Accounting: Information Extraction
from Alternative Sources [0.0]
我々は、信頼できる炭素会計手順への道筋に重要な役割を果たす、より多様なデータソースの必要性について論じる。
金融・海運データに対するOpenAIのGPT APIを用いたNLPを用いた分析により,近年の現実世界データに関するケーススタディを提案する。
論文 参考訳(メタデータ) (2023-11-26T22:49:41Z) - AutoPCF: Efficient Product Carbon Footprint Accounting with Large
Language Models [5.875750227370339]
本稿では,AIによる自動会計フレームワークであるAutoPCFを提案し,計算パラメータの自動マッチングにディープラーニングアルゴリズムを適用し,最終的にPCFを計算した。
これらの結果から,PCFの自動モデリングと推定を数日から数分に短縮できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-08T13:12:03Z) - Towards Carbon-Neutral Edge Computing: Greening Edge AI by Harnessing
Spot and Future Carbon Markets [24.462679595118672]
我々は、CERを複数の時間スケールで購入し、機械学習タスクをオフロードする場所を決定するオンラインアルゴリズムを提案する。
さらに,$T$-slot問題のNP硬度を考慮し,資源制限付きランダム化依存ラウンドリングアルゴリズムを提案する。
実炭素強度トレースによって駆動される理論解析と広範囲なシミュレーション結果は,提案アルゴリズムの優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-22T11:14:16Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
生成的人工知能の最近の進歩は、機械学習トレーニングの需要が急増し、エネルギー消費の大幅な増加によるコスト負担と環境問題を引き起こしている。
地理的に分散したクラウドデータセンタ間でのトレーニングジョブのスケジューリングは、安価で低炭素エネルギーのコンピューティング能力の使用を最適化する機会を浮き彫りにする。
本研究では,実生活におけるワークロードパターン,エネルギー価格,炭素強度を組み込んだクラウドシステムと対話することで,マルチエージェント強化学習とアクタクリティカルな手法に基づく最適協調スケジューリング戦略の学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-17T02:12:30Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
176ビリオンパラメータ言語モデルBLOOMの炭素フットプリントを,そのライフサイクルにわたって定量化する。
BLOOMの最終訓練で約24.7トンのカルボネックが放出されたと推定する。
本稿では,機械学習モデルの炭素フットプリントを正確に推定することの難しさについて論じる。
論文 参考訳(メタデータ) (2022-11-03T17:13:48Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。