論文の概要: AutoML-guided Fusion of Entity and LLM-based Representations for Document Classification
- arxiv url: http://arxiv.org/abs/2408.09794v2
- Date: Mon, 30 Sep 2024 14:02:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:01:32.603000
- Title: AutoML-guided Fusion of Entity and LLM-based Representations for Document Classification
- Title(参考訳): 自動ML誘導によるエンティティの融合と文書分類のためのLCMに基づく表現
- Authors: Boshko Koloski, Senja Pollak, Roberto Navigli, Blaž Škrlj,
- Abstract要約: 本研究は, 知識ベースから埋め込み情報を注入することで, テキスト分類作業において, 現代言語モデル(LLM)に基づく表現の性能を向上できることを実証する。
融合表現空間を持つ自動機械学習(AutoML)を考慮し、原表現空間の低次元投影を用いても分類精度を向上させることができることを示した。
- 参考スコア(独自算出の注目度): 43.56253799373878
- License:
- Abstract: Large semantic knowledge bases are grounded in factual knowledge. However, recent approaches to dense text representations (i.e. embeddings) do not efficiently exploit these resources. Dense and robust representations of documents are essential for effectively solving downstream classification and retrieval tasks. This work demonstrates that injecting embedded information from knowledge bases can augment the performance of contemporary Large Language Model (LLM)-based representations for the task of text classification. Further, by considering automated machine learning (AutoML) with the fused representation space, we demonstrate it is possible to improve classification accuracy even if we use low-dimensional projections of the original representation space obtained via efficient matrix factorization. This result shows that significantly faster classifiers can be achieved with minimal or no loss in predictive performance, as demonstrated using five strong LLM baselines on six diverse real-life datasets. The code is freely available at \url{https://github.com/bkolosk1/bablfusion.git}.
- Abstract(参考訳): 大規模な意味的知識基盤は、事実的知識に根ざしている。
しかし、近年の高密度テキスト表現(つまり埋め込み)へのアプローチは、これらの資源を効率的に活用しない。
ダウンストリーム分類と検索タスクを効果的に解決するためには,文書の高密度かつ堅牢な表現が不可欠である。
本研究は, 知識ベースから埋め込み情報を注入することで, テキスト分類作業において, 現代言語モデル(LLM)に基づく表現の性能を向上できることを実証する。
さらに、融合表現空間を持つ自動機械学習(AutoML)を考慮し、効率的な行列分解により得られた元の表現空間の低次元投影を用いても分類精度を向上させることができることを示した。
この結果は、6つの異なる実生活データセット上で5つの強力なLCMベースラインを用いて示されるように、予測性能の損失を最小限に抑えて、はるかに高速な分類器を実現できることを示している。
コードは \url{https://github.com/bkolosk1/bablfusion.git} で無料で利用できる。
関連論文リスト
- CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - Smart Expert System: Large Language Models as Text Classifiers [3.218954041700146]
本稿では,Large Language Models (LLM) をテキスト分類器として活用する新しいアプローチであるSmart Expert Systemを紹介する。
このシステムは従来のテキスト分類ワークフローを単純化し、広範な前処理やドメインの専門知識を必要としない。
システムの性能は、少数ショットや微調整の戦略によってさらに向上することができる。
論文 参考訳(メタデータ) (2024-05-17T04:05:05Z) - Exploring Prompting Methods for Mitigating Class Imbalance through Synthetic Data Generation with Large Language Models [39.347666307218006]
大規模言語モデル (LLMs) は、様々な領域にまたがるコンテキスト内学習能力を示す。
そこで本研究では,クラス不均衡を緩和する現実的なデータ生成におけるLLMの有効性について検討した。
この結果から, CSV形式, バランスクラス, ユニークな変数マッピングを用いることで, 現実的で信頼性の高いデータを生成できることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T17:49:16Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
MLLM(Multimodal Large Language Models)は、細粒度カテゴリの分類において優れている。
本稿では,MLLMの検索とランク付けのための拡張手法を提案する。
提案手法は, 微粒化認識における固有の限界に対処するだけでなく, モデルの包括的知識基盤も維持する。
論文 参考訳(メタデータ) (2024-03-20T17:59:55Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Many or Few Samples? Comparing Transfer, Contrastive and Meta-Learning
in Encrypted Traffic Classification [68.19713459228369]
我々は、トランスファーラーニング、メタラーニング、コントラストラーニングを、参照機械学習(ML)ツリーベースおよびモノリシックDLモデルと比較する。
i) 大規模なデータセットを用いて,より一般的な表現を得られること,(ii) コントラスト学習が最良の手法であることを示している。
MLツリーベースでは大きなタスクは処理できないが、学習した表現を再利用することで、小さなタスクにも適合するが、DLメソッドはツリーベースモデルのパフォーマンスにも到達している。
論文 参考訳(メタデータ) (2023-05-21T11:20:49Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
MAMLライクなアルゴリズムから派生した表現を解析するための理論的フレームワークを提案する。
我々は,勾配降下による微調整により得られる最良予測器のリスク境界を提示し,アルゴリズムが共有構造を有効活用できることを実証する。
この分離の結果、マイニングベースのメソッド、例えばmamlは、少数ショット学習における"frozen representation"目標を持つメソッドよりも優れている。
論文 参考訳(メタデータ) (2021-05-05T17:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。