Symplectic Neural Networks Based on Dynamical Systems
- URL: http://arxiv.org/abs/2408.09821v1
- Date: Mon, 19 Aug 2024 09:18:28 GMT
- Title: Symplectic Neural Networks Based on Dynamical Systems
- Authors: Benjamin K Tapley,
- Abstract summary: We present and analyze a framework for Symplectic neural networks (SympNets) based on geometric for Hamiltonian differential equations.
The SympNets are universal approximators in the space of Hamiltonian diffeomorphisms, interpretable and have a non-vanishing property.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and analyze a framework for designing symplectic neural networks (SympNets) based on geometric integrators for Hamiltonian differential equations. The SympNets are universal approximators in the space of Hamiltonian diffeomorphisms, interpretable and have a non-vanishing gradient property. We also give a representation theory for linear systems, meaning the proposed P-SympNets can exactly parameterize any symplectic map corresponding to quadratic Hamiltonians. Extensive numerical tests demonstrate increased expressiveness and accuracy -- often several orders of magnitude better -- for lower training cost over existing architectures. Lastly, we show how to perform symbolic Hamiltonian regression with SympNets for polynomial systems using backward error analysis.
Related papers
- Hamiltonian Matching for Symplectic Neural Integrators [9.786274281068815]
Hamilton's equations of motion form a fundamental framework in various branches of physics, including astronomy, quantum mechanics, particle physics, and climate science. Classical numerical solvers are typically employed to compute the time evolution of these systems.
We propose SympFlow, a novel neural network-based symplectic integrator, which is the composition of a sequence of exact flow maps of parametrised time-dependent Hamiltonian functions.
arXiv Detail & Related papers (2024-10-23T20:21:56Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
We propose an architecture which combines existing Hamiltonian Neural Network structures into Adaptable Symplectic Recurrent Neural Networks.
This architecture is found to significantly outperform previously proposed neural networks when predicting Hamiltonian dynamics.
We show that this method works efficiently for single parameter potentials and provides accurate predictions even over long periods of time.
arXiv Detail & Related papers (2023-07-22T19:04:17Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - A unified framework for Hamiltonian deep neural networks [3.0934684265555052]
Training deep neural networks (DNNs) can be difficult due to vanishing/exploding gradients during weight optimization.
We propose a class of DNNs stemming from the time discretization of Hamiltonian systems.
The proposed Hamiltonian framework, besides encompassing existing networks inspired by marginally stable ODEs, allows one to derive new and more expressive architectures.
arXiv Detail & Related papers (2021-04-27T13:20:24Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
We introduce Sparselectically Integrated Neural Networks (SSINNs)
SSINNs are a novel model for learning Hamiltonian dynamical systems from data.
We evaluate SSINNs on four classical Hamiltonian dynamical problems.
arXiv Detail & Related papers (2020-06-10T03:33:37Z) - SympNets: Intrinsic structure-preserving symplectic networks for
identifying Hamiltonian systems [2.6016814327894466]
We propose new symplectic networks (SympNets) for identifying Hamiltonian systems from data based on a composition of linear, activation and gradient modules.
In particular, we define two classes of SympNets: the LA-SympNets composed of linear and activation modules, and the G-SympNets composed of gradient modules.
arXiv Detail & Related papers (2020-01-11T13:04:34Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
The scattering transform is a multilayered wavelet-based deep learning architecture that acts as a model of convolutional neural networks.
We introduce windowed and non-windowed geometric scattering transforms for graphs based upon a very general class of asymmetric wavelets.
We show that these asymmetric graph scattering transforms have many of the same theoretical guarantees as their symmetric counterparts.
arXiv Detail & Related papers (2019-11-14T17:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.