Hamiltonian Matching for Symplectic Neural Integrators
- URL: http://arxiv.org/abs/2410.18262v1
- Date: Wed, 23 Oct 2024 20:21:56 GMT
- Title: Hamiltonian Matching for Symplectic Neural Integrators
- Authors: Priscilla Canizares, Davide Murari, Carola-Bibiane Schönlieb, Ferdia Sherry, Zakhar Shumaylov,
- Abstract summary: Hamilton's equations of motion form a fundamental framework in various branches of physics, including astronomy, quantum mechanics, particle physics, and climate science. Classical numerical solvers are typically employed to compute the time evolution of these systems.
We propose SympFlow, a novel neural network-based symplectic integrator, which is the composition of a sequence of exact flow maps of parametrised time-dependent Hamiltonian functions.
- Score: 9.786274281068815
- License:
- Abstract: Hamilton's equations of motion form a fundamental framework in various branches of physics, including astronomy, quantum mechanics, particle physics, and climate science. Classical numerical solvers are typically employed to compute the time evolution of these systems. However, when the system spans multiple spatial and temporal scales numerical errors can accumulate, leading to reduced accuracy. To address the challenges of evolving such systems over long timescales, we propose SympFlow, a novel neural network-based symplectic integrator, which is the composition of a sequence of exact flow maps of parametrised time-dependent Hamiltonian functions. This architecture allows for a backward error analysis: we can identify an underlying Hamiltonian function of the architecture and use it to define a Hamiltonian matching objective function, which we use for training. In numerical experiments, we show that SympFlow exhibits promising results, with qualitative energy conservation behaviour similar to that of time-stepping symplectic integrators.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Learning Generalized Hamiltonians using fully Symplectic Mappings [0.32985979395737786]
Hamiltonian systems have the important property of being conservative, that is, energy is conserved throughout the evolution.
In particular Hamiltonian Neural Networks have emerged as a mechanism to incorporate structural inductive bias into the NN model.
We show that symplectic schemes are robust to noise and provide a good approximation of the system Hamiltonian when the state variables are sampled from a noisy observation.
arXiv Detail & Related papers (2024-09-17T12:45:49Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Symplectic Neural Networks Based on Dynamical Systems [0.0]
We present and analyze a framework for Symplectic neural networks (SympNets) based on geometric for Hamiltonian differential equations.
The SympNets are universal approximators in the space of Hamiltonian diffeomorphisms, interpretable and have a non-vanishing property.
arXiv Detail & Related papers (2024-08-19T09:18:28Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
We propose an architecture which combines existing Hamiltonian Neural Network structures into Adaptable Symplectic Recurrent Neural Networks.
This architecture is found to significantly outperform previously proposed neural networks when predicting Hamiltonian dynamics.
We show that this method works efficiently for single parameter potentials and provides accurate predictions even over long periods of time.
arXiv Detail & Related papers (2023-07-22T19:04:17Z) - Newton-Cotes Graph Neural Networks: On the Time Evolution of Dynamic
Systems [49.50674348130157]
We propose a new approach to predict the integration based on several velocity estimations with Newton-Cotes formulas.
Experiments on several benchmarks empirically demonstrate consistent and significant improvement compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-24T02:23:00Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
We propose to enhance Hamiltonian neural networks with an estimation of a continuous-time trajectory of the modeled system.
We demonstrate that the proposed integration scheme works well for HNNs, especially with low sampling rates, noisy and irregular observations.
arXiv Detail & Related papers (2022-04-11T13:25:45Z) - Time-Reversal Symmetric ODE Network [138.02741983098454]
Time-reversal symmetry is a fundamental property that frequently holds in classical and quantum mechanics.
We propose a novel loss function that measures how well our ordinary differential equation (ODE) networks comply with this time-reversal symmetry.
We show that, even for systems that do not possess the full time-reversal symmetry, TRS-ODENs can achieve better predictive performances over baselines.
arXiv Detail & Related papers (2020-07-22T12:19:40Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
We introduce Sparselectically Integrated Neural Networks (SSINNs)
SSINNs are a novel model for learning Hamiltonian dynamical systems from data.
We evaluate SSINNs on four classical Hamiltonian dynamical problems.
arXiv Detail & Related papers (2020-06-10T03:33:37Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.