論文の概要: SurgicaL-CD: Generating Surgical Images via Unpaired Image Translation with Latent Consistency Diffusion Models
- arxiv url: http://arxiv.org/abs/2408.09822v1
- Date: Mon, 19 Aug 2024 09:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:54:42.561885
- Title: SurgicaL-CD: Generating Surgical Images via Unpaired Image Translation with Latent Consistency Diffusion Models
- Title(参考訳): SurgicaL-CD:連続拡散モデルを用いた画像翻訳による手術画像の生成
- Authors: Danush Kumar Venkatesh, Dominik Rivoir, Micha Pfeiffer, Stefanie Speidel,
- Abstract要約: 現実的な手術画像を生成するために, 連続拡散法であるemphSurgicaL-CDを導入する。
以上の結果から,本手法はGANや拡散に基づく手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 1.6189876649941652
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computer-assisted surgery (CAS) systems are designed to assist surgeons during procedures, thereby reducing complications and enhancing patient care. Training machine learning models for these systems requires a large corpus of annotated datasets, which is challenging to obtain in the surgical domain due to patient privacy concerns and the significant labeling effort required from doctors. Previous methods have explored unpaired image translation using generative models to create realistic surgical images from simulations. However, these approaches have struggled to produce high-quality, diverse surgical images. In this work, we introduce \emph{SurgicaL-CD}, a consistency-distilled diffusion method to generate realistic surgical images with only a few sampling steps without paired data. We evaluate our approach on three datasets, assessing the generated images in terms of quality and utility as downstream training datasets. Our results demonstrate that our method outperforms GANs and diffusion-based approaches. Our code is available at \url{https://gitlab.com/nct_tso_public/gan2diffusion}.
- Abstract(参考訳): コンピュータ補助手術システム(CAS)は、手術中の外科医を補助し、合併症を軽減し、患者のケアを強化するように設計されている。
これらのシステムのために機械学習モデルをトレーニングするには、大量の注釈付きデータセットが必要である。
従来の手法では, シミュレーションからリアルな手術画像を作成するために, 生成モデルを用いて画像翻訳を行う方法が検討されている。
しかし、これらのアプローチは高品質で多様な外科画像を作成するのに苦労している。
そこで本研究では, ペアデータのないサンプル画像のみを用いて, リアルな画像を生成するために, 整合拡散法である \emph{SurgicaL-CD} を提案する。
3つのデータセットに対する我々のアプローチを評価し、下流トレーニングデータセットとして品質と有用性の観点から生成された画像を評価する。
以上の結果から,本手法はGANや拡散に基づく手法よりも優れていることが示された。
私たちのコードは \url{https://gitlab.com/nct_tso_public/gan2diffusion} で利用可能です。
関連論文リスト
- Surgical Text-to-Image Generation [1.958913666074613]
We adapt text-to-image generative model for the surgery domain using the CholecT50 dataset。
我々は,3重項に基づくテキストプロンプトから,フォトリアリスティックかつ活動対応の手術画像を生成する手術画像nを開発した。
論文 参考訳(メタデータ) (2024-07-12T12:49:11Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Navigating the Synthetic Realm: Harnessing Diffusion-based Models for
Laparoscopic Text-to-Image Generation [3.2039076408339353]
拡散型生成モデルを用いて短いテキストプロンプトから合成腹腔鏡画像を生成するための直感的なアプローチを提案する。
画像ガイド下手術の分野では,拡散モデルがスタイルやセマンティクスの知識を得ることができた。
論文 参考訳(メタデータ) (2023-12-05T16:20:22Z) - Rethinking Surgical Instrument Segmentation: A Background Image Can Be
All You Need [18.830738606514736]
データ不足と不均衡はモデルの精度に大きな影響を与え、ディープラーニングベースの手術アプリケーションの設計と展開を制限してきた。
本稿では,ロボット手術によるデータ収集とアノテーションの複雑で高価なプロセスを排除する,1対多のデータ生成ソリューションを提案する。
経験的分析から,高コストなデータ収集とアノテーションがなければ,適切な手術器具のセグメンテーション性能が達成できることが示唆された。
論文 参考訳(メタデータ) (2022-06-23T16:22:56Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
カメラビューから3Dグラフを生成するための最新のコンピュータビジョン手法を利用する。
次に,手術手順の象徴的,意味的表現を統一することを目的としたマルチモーダルセマンティックグラフシーン(MSSG)を紹介する。
論文 参考訳(メタデータ) (2021-06-09T14:35:44Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
GAN(Generative Adversarial Networks)は、現実的だが斬新なサンプルを生成し、実際の画像分布を効果的にカバーする。
この論文は、医師とのコラボレーションにおいて、そのような新しい応用の臨床的意義を提示することを目的とした4つのGANプロジェクトを含んでいる。
論文 参考訳(メタデータ) (2021-06-03T15:08:14Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。