論文の概要: SSDD-GAN: Single-Step Denoising Diffusion GAN for Cochlear Implant Surgical Scene Completion
- arxiv url: http://arxiv.org/abs/2502.05710v1
- Date: Sat, 08 Feb 2025 22:04:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:08.815788
- Title: SSDD-GAN: Single-Step Denoising Diffusion GAN for Cochlear Implant Surgical Scene Completion
- Title(参考訳): SSDD-GAN : 人工膝関節置換術における単段除圧拡散GAN
- Authors: Yike Zhang, Eduardo Davalos, Jack Noble,
- Abstract要約: 本研究は, 人工乳頭切除データセットの外科的シーンを完了するための効率的な方法を提案する。
我々のアプローチは、実際の外科的データセットにおける自己教師付き学習を活用して、単一ステップのDNOD-GAN(SSDD-GAN)を訓練する。
トレーニングされたモデルは、ゼロショットアプローチを用いて、合成後乳頭切除データセットに直接適用される。
- 参考スコア(独自算出の注目度): 4.250558597144547
- License:
- Abstract: Recent deep learning-based image completion methods, including both inpainting and outpainting, have demonstrated promising results in restoring corrupted images by effectively filling various missing regions. Among these, Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs) have been employed as key generative image completion approaches, excelling in the field of generating high-quality restorations with reduced artifacts and improved fine details. In previous work, we developed a method aimed at synthesizing views from novel microscope positions for mastoidectomy surgeries; however, that approach did not have the ability to restore the surrounding surgical scene environment. In this paper, we propose an efficient method to complete the surgical scene of the synthetic postmastoidectomy dataset. Our approach leverages self-supervised learning on real surgical datasets to train a Single-Step Denoising Diffusion-GAN (SSDD-GAN), combining the advantages of diffusion models with the adversarial optimization of GANs for improved Structural Similarity results of 6%. The trained model is then directly applied to the synthetic postmastoidectomy dataset using a zero-shot approach, enabling the generation of realistic and complete surgical scenes without the need for explicit ground-truth labels from the synthetic postmastoidectomy dataset. This method addresses key limitations in previous work, offering a novel pathway for full surgical microscopy scene completion and enhancing the usability of the synthetic postmastoidectomy dataset in surgical preoperative planning and intraoperative navigation.
- Abstract(参考訳): 近年の深層学習による画像補完手法は, 塗装, 塗装の両面から, 様々な欠損領域を効果的に埋め込むことで, 劣化画像の復元に有望な成果をみせている。
これらのうちGAN(Generative Adversarial Networks)とDDPM(Denoising Diffusion Probabilistic Models)が重要な生成画像補完手法として採用され、アーティファクトの低減と細部の改善による高品質な修復の分野に優れてきた。
本研究は, マントイド手術における新しい顕微鏡位置からの視線を合成する手法を開発したが, 周囲の手術シーン環境を復元する能力は得られなかった。
本稿では, 人工乳頭切除データセットの外科的シーンを完了するための効率的な方法を提案する。
提案手法は, 実際の外科的データセットにおける自己教師型学習を活用して, 拡散モデルの利点とGANの逆最適化を併用し, 6%の構造的類似性を改善する。
トレーニングされたモデルは、ゼロショットアプローチを用いて合成後乳頭切除データセットに直接適用され、合成後乳頭切除データセットから明確な接地木ラベルを必要とせずに、リアルで完全な手術シーンを生成することができる。
本手法は, 外科的術前計画および術中ナビゲーションにおいて, 外科的顕微鏡シーンの完全完成のための新しい経路を提供し, 合成後乳頭切除データセットの有用性を高めることを目的として, これまでの作業における重要な限界に対処する。
関連論文リスト
- Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting [0.0]
そこで我々は, 局所病変生成手法を2つ提案し, 小型医用画像データセットの増大に対処する。
最初のアプローチでは、古典的な画像処理技術であるPoisson Image Editingアルゴリズムを使用して、リアルな画像合成を生成する。
第2のアプローチでは、微調整されたイメージインペインティングGANを利用して、現実的な病変を合成する新しい生成手法を導入している。
論文 参考訳(メタデータ) (2024-11-05T13:44:25Z) - From Real Artifacts to Virtual Reference: A Robust Framework for Translating Endoscopic Images [27.230439605570812]
内視鏡的画像検査では,術前データと術中画像の併用が手術計画やナビゲーションに重要である。
既存のドメイン適応法は、生体内アーティファクトによる分布シフトによって妨げられる。
本稿では,アーチファクト・レジリエントな画像翻訳手法とそれに関連するベンチマークを提案する。
論文 参考訳(メタデータ) (2024-10-15T02:41:52Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - SurgicaL-CD: Generating Surgical Images via Unpaired Image Translation with Latent Consistency Diffusion Models [1.6189876649941652]
現実的な手術画像を生成するために, 連続拡散法であるemphSurgicaL-CDを導入する。
以上の結果から,本手法はGANや拡散に基づく手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-19T09:19:25Z) - Surgical Triplet Recognition via Diffusion Model [59.50938852117371]
外科的三重項認識は、次世代のコンテキスト対応手術室を実現するために必要不可欠なビルディングブロックである。
拡散モデルを用いた外科的三重項認識のための新しい生成フレームワークであるDifftを提案する。
CholecT45とColecT50データセットの実験は、手術用三重項認識のための新しい最先端性能を達成する上で、提案手法の優位性を示している。
論文 参考訳(メタデータ) (2024-06-19T04:43:41Z) - ViTALS: Vision Transformer for Action Localization in Surgical Nephrectomy [7.145773305697571]
UroSliceと呼ばれる新しい腎摘出術のデータセットを紹介した。
これらのビデオからアクションローカライズを行うために,ViTALSと呼ばれる新しいモデルを提案する。
本モデルでは,階層的拡張時間的畳み込み層と層間残差接続を組み込んで,より微細な時間的相関と粗い粒度を捉える。
論文 参考訳(メタデータ) (2024-05-04T05:07:39Z) - DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMeshは、人間のメッシュリカバリを排除した革新的なフレームワークである。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルに埋め込まれた対象構造と空間的関係について、より深い拡散に乗じる。
論文 参考訳(メタデータ) (2024-04-01T18:59:13Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Domain adaptation strategies for 3D reconstruction of the lumbar spine using real fluoroscopy data [9.21828361691977]
本研究は整形外科手術における手術ナビゲーション導入における重要な障害に対処するものである。
これは、少数の蛍光画像から脊椎の3次元解剖モデルを生成するためのアプローチを示す。
これまでの合成データに基づく研究の精度に匹敵する84%のF1スコアを達成しました。
論文 参考訳(メタデータ) (2024-01-29T10:22:45Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。