MAPLE: Enhancing Review Generation with Multi-Aspect Prompt LEarning in Explainable Recommendation
- URL: http://arxiv.org/abs/2408.09865v1
- Date: Mon, 19 Aug 2024 10:12:52 GMT
- Title: MAPLE: Enhancing Review Generation with Multi-Aspect Prompt LEarning in Explainable Recommendation
- Authors: Ching-Wen Yang, Che Wei Chen, Kun-da Wu, Hao Xu, Jui-Feng Yao, Hung-Yu Kao,
- Abstract summary: We propose a personalized, aspect-controlled model called Multi-Aspect Prompt LEarner (MAPLE)
Experiments on two real-world review datasets in restaurant domain show that MAPLE outperforms the baseline review-generation models in terms of text.
- Score: 12.874105550787514
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Explainable Recommendation task is designed to receive a pair of user and item and output explanations to justify why an item is recommended to a user. Many models treat review-generation as a proxy of explainable recommendation. Although they are able to generate fluent and grammatical sentences, they suffer from generality and hallucination issues. We propose a personalized, aspect-controlled model called Multi-Aspect Prompt LEarner (MAPLE), in which it integrates aspect category as another input dimension to facilitate the memorization of fine-grained aspect terms. Experiments on two real-world review datasets in restaurant domain show that MAPLE outperforms the baseline review-generation models in terms of text and feature diversity while maintaining excellent coherence and factual relevance. We further treat MAPLE as a retriever component in the retriever-reader framework and employ a Large-Language Model (LLM) as the reader, showing that MAPLE's explanation along with the LLM's comprehension ability leads to enriched and personalized explanation as a result. We will release the code and data in this http upon acceptance.
Related papers
- User Preferences for Large Language Model versus Template-Based Explanations of Movie Recommendations: A Pilot Study [0.6965384453064829]
Large language models (LLMs) can generate more resonant explanations for recommender systems.
We conducted a pilot study with 25 participants.
Although subject to high variance, preliminary findings suggest that LLM-based explanations may provide a richer and more engaging user experience.
arXiv Detail & Related papers (2024-09-10T07:51:53Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
We propose a method for unsupervised abstractive opinion summarization that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs)
Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy.
At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews.
arXiv Detail & Related papers (2024-03-01T10:38:07Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
Large language models (LLMs) have demonstrated remarkable intelligence in understanding, reasoning, and instruction following.
This paper presents the initial exploration of using LLMs as surrogate models to explain black-box recommender models.
To facilitate an effective alignment, we introduce three methods: behavior alignment, intention alignment, and hybrid alignment.
arXiv Detail & Related papers (2023-11-18T03:05:43Z) - Towards LLM-guided Causal Explainability for Black-box Text Classifiers [16.36602400590088]
We aim to leverage the instruction-following and textual understanding capabilities of recent Large Language Models to facilitate causal explainability.
We propose a three-step pipeline via which, we use an off-the-shelf LLM to identify the latent or unobserved features in the input text.
We experiment with our pipeline on multiple NLP text classification datasets, and present interesting and promising findings.
arXiv Detail & Related papers (2023-09-23T11:22:28Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z) - Graph-based Extractive Explainer for Recommendations [38.278148661173525]
We develop a graph attentive neural network model that seamlessly integrates user, item, attributes, and sentences for extraction-based explanation.
To balance individual sentence relevance, overall attribute coverage, and content redundancy, we solve an integer linear programming problem to make the final selection of sentences.
arXiv Detail & Related papers (2022-02-20T04:56:10Z) - Counterfactual Explainable Recommendation [22.590877963169103]
We propose Counterfactual Explainable Recommendation (CountER), which takes the insights of counterfactual reasoning from causal inference for explainable recommendation.
CountER seeks simple (low complexity) and effective (high strength) explanations for the model decision.
Results show that our model generates more accurate and effective explanations than state-of-the-art explainable recommendation models.
arXiv Detail & Related papers (2021-08-24T06:37:57Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Exploring Explainable Selection to Control Abstractive Summarization [51.74889133688111]
We develop a novel framework that focuses on explainability.
A novel pair-wise matrix captures the sentence interactions, centrality, and attribute scores.
A sentence-deployed attention mechanism in the abstractor ensures the final summary emphasizes the desired content.
arXiv Detail & Related papers (2020-04-24T14:39:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.