MAPLE: Enhancing Review Generation with Multi-Aspect Prompt LEarning in Explainable Recommendation
- URL: http://arxiv.org/abs/2408.09865v2
- Date: Sat, 24 May 2025 17:28:10 GMT
- Title: MAPLE: Enhancing Review Generation with Multi-Aspect Prompt LEarning in Explainable Recommendation
- Authors: Ching-Wen Yang, Zhi-Quan Feng, Ying-Jia Lin, Che-Wei Chen, Kun-da Wu, Hao Xu, Jui-Feng Yao, Hung-Yu Kao,
- Abstract summary: We propose a personalized, aspect-controlled model called Multi-Aspect Prompt LEarner (MAPLE)<n>Experiments conducted on two real-world review datasets in the restaurant domain demonstrate that MAPLE significantly outperforms baseline review-generation models.
- Score: 12.68667064916211
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Explainable Recommendation task is designed to receive a pair of user and item and output explanations to justify why an item is recommended to a user. Many models approach review generation as a proxy for explainable recommendations. While these models can produce fluent and grammatically correct sentences, they often lack precision and fail to provide personalized, informative recommendations. To address this issue, we propose a personalized, aspect-controlled model called Multi-Aspect Prompt LEarner (MAPLE), which integrates aspect category as another input dimension to facilitate memorizing fine-grained aspect terms. Experiments conducted on two real-world review datasets in the restaurant domain demonstrate that MAPLE significantly outperforms baseline review-generation models. MAPLE excels in both text and feature diversity, ensuring that the generated content covers a wide range of aspects. Additionally, MAPLE delivers good generation quality while maintaining strong coherence and factual relevance. The code and dataset used in this paper can be found here https://github.com/Nana2929/MAPLE.git.
Related papers
- Towards Bridging Review Sparsity in Recommendation with Textual Edge Graph Representation [28.893058826607735]
We propose a unified framework that imputes missing reviews by jointly modeling semantic and structural signals.<n>Experiments on the Amazon and Goodreads datasets show that TWISTER consistently outperforms traditional numeric, graph-based, and LLM baselines.<n>In summary, TWISTER generates reviews that are more helpful, authentic, and specific, while smoothing structural signals for improved recommendations.
arXiv Detail & Related papers (2025-08-02T00:53:40Z) - Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation [26.214148426964794]
We introduce new datasets and evaluation methods that focus on the users' sentiments.<n>We construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews.<n>We propose to evaluate systems based on whether the generated explanations align well with the users' sentiments.
arXiv Detail & Related papers (2024-10-17T06:15:00Z) - User Preferences for Large Language Model versus Template-Based Explanations of Movie Recommendations: A Pilot Study [0.6965384453064829]
Large language models (LLMs) can generate more resonant explanations for recommender systems.
We conducted a pilot study with 25 participants.
Although subject to high variance, preliminary findings suggest that LLM-based explanations may provide a richer and more engaging user experience.
arXiv Detail & Related papers (2024-09-10T07:51:53Z) - ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation [38.64175351885443]
Large language models have been flourishing in the natural language processing (NLP) domain.
Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns.
Existing works only fine-tune a sole LLM on given text data without introducing that important information to it.
arXiv Detail & Related papers (2024-06-27T01:37:57Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
We propose a method for unsupervised abstractive opinion summarization that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs)
Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy.
At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews.
arXiv Detail & Related papers (2024-03-01T10:38:07Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - AiGen-FoodReview: A Multimodal Dataset of Machine-Generated Restaurant
Reviews and Images on Social Media [57.70351255180495]
AiGen-FoodReview is a dataset of 20,144 restaurant review-image pairs divided into authentic and machine-generated.
We explore unimodal and multimodal detection models, achieving 99.80% multimodal accuracy with FLAVA.
The paper contributes by open-sourcing the dataset and releasing fake review detectors, recommending its use in unimodal and multimodal fake review detection tasks, and evaluating linguistic and visual features in synthetic versus authentic data.
arXiv Detail & Related papers (2024-01-16T20:57:36Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
Large language models (LLMs) have demonstrated remarkable intelligence in understanding, reasoning, and instruction following.
This paper presents the initial exploration of using LLMs as surrogate models to explain black-box recommender models.
To facilitate an effective alignment, we introduce three methods: behavior alignment, intention alignment, and hybrid alignment.
arXiv Detail & Related papers (2023-11-18T03:05:43Z) - Towards LLM-guided Causal Explainability for Black-box Text Classifiers [16.36602400590088]
We aim to leverage the instruction-following and textual understanding capabilities of recent Large Language Models to facilitate causal explainability.
We propose a three-step pipeline via which, we use an off-the-shelf LLM to identify the latent or unobserved features in the input text.
We experiment with our pipeline on multiple NLP text classification datasets, and present interesting and promising findings.
arXiv Detail & Related papers (2023-09-23T11:22:28Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z) - AaKOS: Aspect-adaptive Knowledge-based Opinion Summarization [5.4138734778206]
The rapid growth of information on the Internet has led to an overwhelming amount of opinions and comments on various activities, products, and services.
This makes it difficult and time-consuming for users to process all the available information when making decisions.
We propose an Aspect-adaptive Knowledge-based Opinion Summarization model for product reviews.
arXiv Detail & Related papers (2023-05-26T03:44:35Z) - Factual and Informative Review Generation for Explainable Recommendation [41.403493319602816]
Previous models' generated content often contain factual hallucinations.
Inspired by recent success in using retrieved content in addition to parametric knowledge for generation, we propose to augment the generator with a personalized retriever.
Experiments on Yelp, TripAdvisor, and Amazon Movie Reviews dataset show our model could generate explanations that more reliably entail existing reviews, are more diverse, and are rated more informative by human evaluators.
arXiv Detail & Related papers (2022-09-12T16:46:47Z) - Efficient Few-Shot Fine-Tuning for Opinion Summarization [83.76460801568092]
Abstractive summarization models are typically pre-trained on large amounts of generic texts, then fine-tuned on tens or hundreds of thousands of annotated samples.
We show that a few-shot method based on adapters can easily store in-domain knowledge.
We show that this self-supervised adapter pre-training improves summary quality over standard fine-tuning by 2.0 and 1.3 ROUGE-L points on the Amazon and Yelp datasets.
arXiv Detail & Related papers (2022-05-04T16:38:37Z) - Graph-based Extractive Explainer for Recommendations [38.278148661173525]
We develop a graph attentive neural network model that seamlessly integrates user, item, attributes, and sentences for extraction-based explanation.
To balance individual sentence relevance, overall attribute coverage, and content redundancy, we solve an integer linear programming problem to make the final selection of sentences.
arXiv Detail & Related papers (2022-02-20T04:56:10Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Exploring Explainable Selection to Control Abstractive Summarization [51.74889133688111]
We develop a novel framework that focuses on explainability.
A novel pair-wise matrix captures the sentence interactions, centrality, and attribute scores.
A sentence-deployed attention mechanism in the abstractor ensures the final summary emphasizes the desired content.
arXiv Detail & Related papers (2020-04-24T14:39:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.