論文の概要: SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images
- arxiv url: http://arxiv.org/abs/2408.09886v1
- Date: Mon, 19 Aug 2024 11:01:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:44:56.760754
- Title: SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images
- Title(参考訳): SAM-UNet:ユニバーサル医療画像におけるSAMのゼロショットセグメンテーションの促進
- Authors: Sihan Yang, Haixia Bi, Hai Zhang, Jian Sun,
- Abstract要約: Segment Anything Model (SAM) は、様々な自然画像のセグメンテーションタスクにおいて印象的な性能を示した。
本稿では,U-Netを元のSAMに組み込んだ新たな基盤モデルSAMUNetを提案する。
我々は,SA-Med2D-16MでSAM-UNetをトレーニングした。
- 参考スコア(独自算出の注目度): 40.4422523499489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segment Anything Model (SAM) has demonstrated impressive performance on a wide range of natural image segmentation tasks. However, its performance significantly deteriorates when directly applied to medical domain, due to the remarkable differences between natural images and medical images. Some researchers have attempted to train SAM on large scale medical datasets. However, poor zero-shot performance is observed from the experimental results. In this context, inspired by the superior performance of U-Net-like models in medical image segmentation, we propose SAMUNet, a new foundation model which incorporates U-Net to the original SAM, to fully leverage the powerful contextual modeling ability of convolutions. To be specific, we parallel a convolutional branch in the image encoder, which is trained independently with the vision Transformer branch frozen. Additionally, we employ multi-scale fusion in the mask decoder, to facilitate accurate segmentation of objects with different scales. We train SAM-UNet on SA-Med2D-16M, the largest 2-dimensional medical image segmentation dataset to date, yielding a universal pretrained model for medical images. Extensive experiments are conducted to evaluate the performance of the model, and state-of-the-art result is achieved, with a dice similarity coefficient score of 0.883 on SA-Med2D-16M dataset. Specifically, in zero-shot segmentation experiments, our model not only significantly outperforms previous large medical SAM models across all modalities, but also substantially mitigates the performance degradation seen on unseen modalities. It should be highlighted that SAM-UNet is an efficient and extensible foundation model, which can be further fine-tuned for other downstream tasks in medical community. The code is available at https://github.com/Hhankyangg/sam-unet.
- Abstract(参考訳): Segment Anything Model (SAM) は、様々な自然画像のセグメンテーションタスクにおいて印象的な性能を示した。
しかし, 自然画像と医用画像の相違により, 直接医療領域に適用した場合, その性能は著しく低下する。
一部の研究者は、SAMを大規模医療データセットでトレーニングしようと試みている。
しかし, 実験結果からゼロショット性能は低かった。
医用画像セグメンテーションにおけるU-Netライクなモデルの性能に着想を得て,U-Netを元のSAMに組み込んだ新たな基盤モデルSAMUNetを提案し,畳み込みの強力なコンテキストモデリング能力をフル活用する。
具体的には、画像エンコーダの畳み込み分岐を並列化し、視覚トランスフォーマー分岐をフリーズして独立に訓練する。
さらに,マスクデコーダのマルチスケール融合を利用して,異なるスケールのオブジェクトの正確なセグメンテーションを容易にする。
我々は,SA-Med2D-16MでSAM-UNetをトレーニングした。
SA-Med2D-16Mデータセット上で, サイス類似度係数の0.883のスコアで, モデルの性能評価実験を行った。
具体的には、ゼロショットセグメンテーション実験において、我々のモデルは、すべてのモダリティで以前の大きなSAMモデルよりも大幅に優れるだけでなく、目に見えないモダリティで見られるパフォーマンス劣化を著しく軽減する。
SAM-UNetは効率的で拡張可能な基盤モデルであり、医療コミュニティの他の下流のタスクをさらに微調整することができる点を強調しておく必要がある。
コードはhttps://github.com/Hhankyangg/sam-unet.comで公開されている。
関連論文リスト
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
本稿では,2次元医療データと2次元医療データとのギャップを埋めるために,DB-SAMという二分岐型SAMフレームワークを提案する。
文献における最近の医療用SAMアダプタと比較して,DB-SAMは8.8%向上した。
論文 参考訳(メタデータ) (2024-10-05T14:36:43Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - Comprehensive Multimodal Segmentation in Medical Imaging: Combining
YOLOv8 with SAM and HQ-SAM Models [0.24578723416255752]
提案手法は, YOLOv8モデルを用いて, モダリティ間の近似境界ボックス検出を行う。
境界ボックスを生成するために、YOLOv8モデルは、各モードから100の画像とマスクの限られたセットを使用して訓練された。
YOLOv8, YOLOv8+SAM, YOLOv8+HQ-SAMモデルの個人および複合性能を評価するために比較分析を行った。
論文 参考訳(メタデータ) (2023-10-04T20:30:49Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SAM-Med2D [34.82072231983896]
我々はSAM-Med2Dを医療用2次元画像に適用する最も包括的な研究である。
まず、公開およびプライベートデータセットから約4.6Mの画像と19.7Mマスクを収集し、キュレートします。
元のSAMのエンコーダとデコーダを微調整して、良好な性能のSAM-Med2Dを得る。
論文 参考訳(メタデータ) (2023-08-30T17:59:02Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像データに高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
論文 参考訳(メタデータ) (2023-04-22T07:11:53Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。