論文の概要: Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement
- arxiv url: http://arxiv.org/abs/2408.09920v1
- Date: Mon, 19 Aug 2024 11:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:35:10.989145
- Title: Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement
- Title(参考訳): Sliced Maximal Information Coefficient: 画像品質評価向上のためのトレーニング不要アプローチ
- Authors: Kang Xiao, Xu Wang, Yulin He, Baoliang Chen, Xuelin Shen,
- Abstract要約: 我々は,人間の品質評価の過程を模倣する,一般化された視覚的注意度推定戦略を検討することを目的とする。
特に、劣化画像と参照画像の統計的依存性を測定することによって、人間の注意生成をモデル化する。
既存のIQAモデルのアテンションモジュールを組み込んだ場合、既存のIQAモデルの性能を一貫して改善できることを示す実験結果が得られた。
- 参考スコア(独自算出の注目度): 12.628718661568048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-reference image quality assessment (FR-IQA) models generally operate by measuring the visual differences between a degraded image and its reference. However, existing FR-IQA models including both the classical ones (eg, PSNR and SSIM) and deep-learning based measures (eg, LPIPS and DISTS) still exhibit limitations in capturing the full perception characteristics of the human visual system (HVS). In this paper, instead of designing a new FR-IQA measure, we aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating and enhance existing IQA models. In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image. The dependency is captured in a training-free manner by our proposed sliced maximal information coefficient and exhibits surprising generalization in different IQA measures. Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated. The source code is available at https://github.com/KANGX99/SMIC.
- Abstract(参考訳): フルリファレンス画像品質評価(FR-IQA)モデルは、一般的に、劣化した画像とその参照の間の視覚的差異を測定することによって機能する。
しかし、従来のFR-IQAモデル(例えば、PSNRとSSIM)と深層学習に基づく尺度(例えば、LPIPSとdisTS)は、人間の視覚システム(HVS)の完全な知覚特性を捉えるのに限界がある。
本稿では、新しいFR-IQA尺度を設計する代わりに、人間の品質評価のプロセスを模倣し、既存のIQAモデルを強化するために、一般化された人間の視覚的注意度推定戦略を検討することを目的とする。
特に、劣化画像と参照画像の統計的依存性を測定することによって、人間の注意生成をモデル化する。
この依存関係は,提案したスライスされた最大情報係数によって学習不要な方法で捕捉され,IQAの異なる尺度で驚くほどの一般化を示す。
既存のIQAモデルのアテンションモジュールを組み込んだ場合、既存のIQAモデルの性能を一貫して改善できることを示す実験結果が得られた。
ソースコードはhttps://github.com/KANGX99/SMICで入手できる。
関連論文リスト
- GenzIQA: Generalized Image Quality Assessment using Prompt-Guided Latent Diffusion Models [7.291687946822539]
最先端のNR-IQA手法の大きな欠点は、様々なIQA設定にまたがる一般化能力に制限があることである。
近年のテキスト・ツー・イメージ生成モデルでは,テキスト概念に関する細部から意味のある視覚概念が生成されている。
本研究では、学習可能な品質対応テキストプロンプトと画像のアライメントの程度を理解することにより、一般化されたIQAに対してそのような拡散モデルのデノベーションプロセスを利用する。
論文 参考訳(メタデータ) (2024-06-07T05:46:39Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
我々はまず,AIGCIQA2023+と呼ばれるAIGIのための画像品質評価(IQA)データベースを構築した。
本稿では,AIGIに対する人間の嗜好を評価するためのMINT-IQAモデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:45:11Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Comparison of No-Reference Image Quality Models via MAP Estimation in
Diffusion Latents [99.19391983670569]
NR-IQAモデルは、画像強調のための最大後部推定(MAP)フレームワークにプラグイン可能であることを示す。
異なるNR-IQAモデルは異なる拡張イメージを誘導し、最終的には精神物理学的なテストを受ける。
これにより, NR-IQAモデルの比較を行う新たな計算手法が提案される。
論文 参考訳(メタデータ) (2024-03-11T03:35:41Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
画像品質評価(IQA)は放射線線量最適化と新しい医用イメージング技術開発において重要な役割を担っている。
最近の深層学習に基づくアプローチは、強力なモデリング能力と医療IQAの可能性を示している。
本稿では,出力分布を制約して品質スコアを予測するため,マルチスケール分布回帰手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T09:33:33Z) - Enhancing image quality prediction with self-supervised visual masking [20.190853812320395]
フルリファレンス画像品質指標(FR-IQMs)は、参照と歪んだ画像の対の視覚的差異を測定することを目的としている。
本稿では,視認性に基づいて視覚的誤りをペナルティ化する方法で,参照や歪んだ画像を変調する視覚マスキングモデルを提案する。
提案手法は,視覚的,定量的に予測されるFR-IQM測定値とより一致した拡張FR-IQM測定値である。
論文 参考訳(メタデータ) (2023-05-31T13:48:51Z) - Perceptual Attacks of No-Reference Image Quality Models with
Human-in-the-Loop [113.75573175709573]
NR-IQAモデルの知覚的堅牢性を調べるための最初の試みの1つを行う。
我々は,4つの完全参照IQAモデルの下で,知識駆動のNR-IQA法とデータ駆動のNR-IQA法を検証した。
4つのNR-IQAモデルは全て、提案した知覚的攻撃に対して脆弱であることがわかった。
論文 参考訳(メタデータ) (2022-10-03T13:47:16Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
知覚品質評価(IQA)のための学習ベースアプローチは、通常、知覚品質を正確に測定するために歪んだ画像と参照画像の両方を必要とする。
本研究では,変換器を用いた全参照IQAモデルの性能について検討する。
また,全教師モデルから盲人学生モデルへの半教師付き知識蒸留に基づくIQAの手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T10:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。