論文の概要: DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery
- arxiv url: http://arxiv.org/abs/2408.09928v1
- Date: Mon, 19 Aug 2024 12:07:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-20 16:24:38.658049
- Title: DiscoNeRF: Class-Agnostic Object Field for 3D Object Discovery
- Title(参考訳): DiscoNeRF:3Dオブジェクト発見のためのクラス非依存オブジェクトフィールド
- Authors: Corentin Dumery, Aoxiang Fan, Ren Li, Nicolas Talabot, Pascal Fua,
- Abstract要約: NeRFは複数の画像から3Dシーンをモデリングするための強力なツールになっている。
以前のNeRFの3Dセグメンテーションへのアプローチは、単一のオブジェクトを分離するためにユーザーインタラクションを必要とするか、あるいは監督のために限られた数のクラスを持つ2Dセマンティックマスクに依存している。
本稿では,一貫性のないセグメンテーションに頑健な手法を提案し,シーンを任意のクラスのオブジェクトの集合に分解することに成功した。
- 参考スコア(独自算出の注目度): 46.711276257688326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Radiance Fields (NeRFs) have become a powerful tool for modeling 3D scenes from multiple images. However, NeRFs remain difficult to segment into semantically meaningful regions. Previous approaches to 3D segmentation of NeRFs either require user interaction to isolate a single object, or they rely on 2D semantic masks with a limited number of classes for supervision. As a consequence, they generalize poorly to class-agnostic masks automatically generated in real scenes. This is attributable to the ambiguity arising from zero-shot segmentation, yielding inconsistent masks across views. In contrast, we propose a method that is robust to inconsistent segmentations and successfully decomposes the scene into a set of objects of any class. By introducing a limited number of competing object slots against which masks are matched, a meaningful object representation emerges that best explains the 2D supervision and minimizes an additional regularization term. Our experiments demonstrate the ability of our method to generate 3D panoptic segmentations on complex scenes, and extract high-quality 3D assets from NeRFs that can then be used in virtual 3D environments.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は、複数の画像から3Dシーンをモデリングするための強力なツールとなっている。
しかし、NeRFは意味的に意味のある領域に分割することが困難である。
以前のNeRFの3Dセグメンテーションへのアプローチは、単一のオブジェクトを分離するためにユーザーインタラクションを必要とするか、あるいは監督のために限られた数のクラスを持つ2Dセマンティックマスクに依存している。
その結果、実際のシーンで自動生成されるクラス非依存のマスクに悪影響を及ぼす。
これは、ゼロショットのセグメンテーションから生じる曖昧さに起因し、ビューにまたがる一貫性のないマスクをもたらす。
対照的に、一貫性のないセグメンテーションに頑健な手法を提案し、シーンを任意のクラスのオブジェクトの集合に分解することに成功した。
マスクがマッチする限られた数の競合オブジェクトスロットを導入することで、意味のあるオブジェクト表現が登場し、2Dの監督を最もよく説明し、追加の正規化項を最小化する。
実験では,複雑な場面で3Dパノプティクスのセグメンテーションを生成し,仮想3D環境において使用可能なNeRFから高品質な3Dアセットを抽出する手法を実証した。
関連論文リスト
- MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
推論セグメンテーション(Reasoning segmentation)は、人間の意図と空間的推論に基づく複雑なシーンにおける対象オブジェクトのセグメンテーションを目的としている。
最近のマルチモーダル大言語モデル(MLLM)は印象的な2次元画像推論セグメンテーションを実証している。
本稿では,2次元MLLMから3次元シーン理解へ知識を伝達するフレームワークであるMLLM-For3Dを紹介する。
論文 参考訳(メタデータ) (2025-03-23T16:40:20Z) - CutS3D: Cutting Semantics in 3D for 2D Unsupervised Instance Segmentation [13.871856894814005]
我々は,シーンのポイントクラウド表現を利用して,最後の2Dインスタンスを得るために,3次元のセマンティックマスクをカットすることを提案する。
また,クリーンな学習信号の分離を目的とした3つの空間信頼成分を用いたクラス非依存検出器のトレーニングの強化も提案する。
論文 参考訳(メタデータ) (2024-11-25T12:11:27Z) - XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation [72.12250272218792]
本稿では,3次元特徴量と2次元テキスト埋め込み空間とのより精巧なマスクレベルのアライメントを,クロスモーダルマスク推論フレームワークであるXMask3Dを用いて提案する。
我々は、3Dグローバルな特徴を暗黙の条件として、事前訓練された2D denoising UNetに統合し、セグメンテーションマスクの生成を可能にする。
生成した2Dマスクを用いて、マスクレベルの3D表現を視覚言語の特徴空間と整合させ、3D幾何埋め込みの開語彙能力を増大させる。
論文 参考訳(メタデータ) (2024-11-20T12:02:12Z) - Fast and Efficient: Mask Neural Fields for 3D Scene Segmentation [47.08813064337934]
本稿では,新しい視点から3次元オープン語彙セグメンテーションを実現するMaskFieldを提案する。
MaskFieldは、マスクの特徴フィールドとクエリを定式化することによって、基礎モデルからマスクと意味的特徴の蒸留を分解する。
実験の結果,MaskFieldは従来の最先端手法を超越するだけでなく,極めて高速な収束を実現することがわかった。
論文 参考訳(メタデータ) (2024-07-01T12:07:26Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
我々は3次元シーンを表すニューラル・レージアンス・フィールド(NeRF)内の新しい特徴場を学習する。
本手法は、ビュー一貫性の多粒性2Dセグメンテーションを入力とし、3D一貫性のセグメンテーションの階層構造を出力として生成する。
提案手法と,多視点画像と多粒性セグメンテーションを用いた合成データセットのベースラインの評価を行い,精度と視点整合性を向上したことを示す。
論文 参考訳(メタデータ) (2024-05-30T04:14:58Z) - Segment3D: Learning Fine-Grained Class-Agnostic 3D Segmentation without
Manual Labels [141.23836433191624]
現在の3Dシーンセグメンテーション手法は、手動で注釈付けされた3Dトレーニングデータセットに大きく依存している。
高品質な3Dセグメンテーションマスクを生成するクラス非依存の3Dシーンセグメンテーション法であるSegment3Dを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:57:11Z) - Geometry Aware Field-to-field Transformations for 3D Semantic
Segmentation [48.307734886370014]
ニューラル・レージアンス・フィールド(NeRF)を利用した3次元セマンティック・セマンティック・セマンティック・セマンティック・セマンティクスの手法を提案する。
表面点雲に沿って特徴を抽出することにより,サンプル効率が高く3次元推論に導出しやすいシーンのコンパクトな表現を実現する。
論文 参考訳(メタデータ) (2023-10-08T11:48:19Z) - OR-NeRF: Object Removing from 3D Scenes Guided by Multiview Segmentation
with Neural Radiance Fields [53.32527220134249]
ニューラル・レージアンス・フィールド(NeRF)の出現により,3次元シーン編集への関心が高まっている。
現在の手法では、時間を要するオブジェクトのラベル付け、特定のターゲットを削除する能力の制限、削除後のレンダリング品質の妥協といった課題に直面している。
本稿では, OR-NeRF と呼ばれる新しいオブジェクト除去パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-17T18:18:05Z) - Segment Anything in 3D with Radiance Fields [83.14130158502493]
本稿では,Segment Anything Model (SAM) を一般化して3次元オブジェクトをセグメント化する。
提案手法をSA3D, 略してSegment Anything in 3Dと呼ぶ。
実験では,SA3Dが様々なシーンに適応し,数秒で3Dセグメンテーションを実現することを示す。
論文 参考訳(メタデータ) (2023-04-24T17:57:15Z) - SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural
Radiance Fields [26.296017756560467]
3Dでは、解は複数のビューで一貫し、幾何学的に有効でなければならない。
本稿では,これらの課題に対処する新しい3Dインペイント手法を提案する。
我々はまず,NeRF法と2次元セグメンテーション法と比較して,マルチビューセグメンテーションにおけるアプローチの優位性を実証する。
論文 参考訳(メタデータ) (2022-11-22T13:14:50Z) - ONeRF: Unsupervised 3D Object Segmentation from Multiple Views [59.445957699136564]
OneRFは、追加のマニュアルアノテーションなしで、マルチビューのRGBイメージから3Dのオブジェクトインスタンスを自動的に分割し、再構成する手法である。
セグメント化された3Dオブジェクトは、様々な3Dシーンの編集と新しいビューレンダリングを可能にする別個のNeRF(Neural Radiance Fields)を使用して表現される。
論文 参考訳(メタデータ) (2022-11-22T06:19:37Z) - Unsupervised Multi-View Object Segmentation Using Radiance Field
Propagation [55.9577535403381]
本稿では,未ラベルのシーンの多視点画像のみを考慮し,再構成中の3次元オブジェクトのセグメント化に新たなアプローチを提案する。
提案手法の核となるのは,2方向光度損失を持つ個々の物体の放射界に対する新しい伝搬戦略である。
我々の知る限り、RFPはニューラルレイディアンスフィールド(NeRF)のための3次元シーンオブジェクトセグメンテーションに取り組むための最初の教師なしアプローチである。
論文 参考訳(メタデータ) (2022-10-02T11:14:23Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - Decomposing 3D Scenes into Objects via Unsupervised Volume Segmentation [26.868351498722884]
ニューラルラジアンスフィールド(NeRF)の集合として表現された3Dモデルにシーンの単一のイメージを変換する手法であるObSuRFを紹介します。
RGB-D入力でのNeRFのトレーニングを可能にする新しい損失を導き出し、より計算的に学習を効率化します。
論文 参考訳(メタデータ) (2021-04-02T16:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。